
The patchcmd package

Michael J. Downes∗

Version 1.05, 2016/06/03

1 Introduction
The patchcmd package provides a command \patchcommand that can be used
to add material at the beginning and/or end of the replacement text of an
existing macro. It works for macros with any number of normal arguments (0–
9), including macros that were defined with \DeclareRobustCommand. However,
it does not work for macros that use \futurelet, for example ones defined to
have starred forms or optional arguments. In addition, it does not work for
macros that have delimited arguments.

This package is the result of some discussion initiated by Peter Wilson in the
newsgroup comp.text.tex in June 2000 and continued with Peter and Heiko
Oberdiek.

Subject: Re: Adding stuff at end of a macro

References:

<3ojiks8in1f5s575eta5rg7ncoc98mpi8f@4ax.com>

<39492C50.A962193B@boeing.com>

<pcitvabqk2.fsf@thor.ams.org>

2 Implementation
Standard declaration of package name and date.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{patchcmd}[2016/06/03 v1.05]

For debugging.

%%\def\wrs{\immediate\write\sixt@@n}

\newcommand{\patchcommand}[1]{%

\expandafter\patchcmd@a\meaning#1??->@\@nil#1%

}

We begin by looking at the meaning string of the given token. We will issue
an error message if the token is not a control sequence, if it is an undefined
control sequence, or if it is a known control sequence but not a macro.

\long\def\patchcmd@a#1#2#3->#4#5\@nil#6{%

∗Michael died in 2003

1



2 THE PATCHCMD PACKAGE

%% \wrs{\string#6: [#1] [#2] [#3]->[#4]}%

\ifx @#4\relax \patchcmdError#6#1%

\expandafter\@gobbletwo % discard the other two arguments

\else

\if l#2\toks@{\patchcmd@e{}#6}% l in this position means \long

\else \toks@{\patchcmd@e*#6}% not \long

\fi

Now \patchcmd@b will do further analysis to determine what kinds of arguments
the macro takes. If it takes n normal arguments, the digit n (0–9) will be added
to \toks@.

\patchcmd@b #3@#4#5 ? ? ? \@nil#6%

\expandafter\the\expandafter\toks@

\fi

}

We handle robust commands by scanning the first two control words in the
macro’s definition to see if the second one is followed by two spaces. If it is,
then arg 7 will be empty. In that case we compare the csname preceding the
two spaces to the original argument of \patchcommand. If they are equal it is
nearly certain that this is a robust command in normal LATEX form. In that
case we call \patchcommand quasi-recursively on the protected control sequence
with the extra space at the end of its name.

\def\patchcmd@b#1:#2@#3#4 #5#6 #7 #8\@nil#9{%

%% \wrs{[#1] [#2] [#3] [#4] [#5] [#6] ARG7=[#7] [#8]}%

\if \ifx @#7@\expandafter

\ifx\csname #6\endcsname#9T\else F\fi\else F\fi T%

\toks@\expandafter{\expandafter\patchcommand\csname #6 \endcsname}%

\else

\ifx @#2@% No arguments

\toks@\expandafter{\the\toks@ 0}%

\else

\patchcmd@c 0#2{\string##}0%

\fi

\fi

}

The task of \patchcmd@c is to iterate over #D pairs, where D is a digit in
the range 1–9, until reaching the last one. Whenever we find such a pair, we
carry the digit forward for the next recursive call; but we use digit 0 as a marker
to terminate the recursion. If any other character interrupts the #D pattern, it
means that this macro has some kind of delimited argument.

\def\patchcmd@c#1#2#3{%

\if\string###2% % yes it’s a # token

\ifodd 0#31 % and it’s followed by a number

\if 0#3\patchcmd@d#1\fi % number=0? then we’re done

\else \patchcmd@d D% # not a number: must be a delimited arg

\fi

\else \patchcmd@d D% not a # token: must be a delmited arg

\fi



2. IMPLEMENTATION 3

\patchcmd@c#3%

}

\def\patchcmd@d#1{%

\if D#1%

\PackageError{patchcmd}{Cannot change a macro that has

delimited arguments}\@ehd

\else

\toks@\expandafter{\the\toks@ #1}%

\fi

\begingroup

\aftergroup\@gobble

\let\patchcmd@c\endgroup

}

\def\patchcmd@e#1#2#3#4#5{%

\begingroup

\edef\@##1{%

\@temptokena\noexpand\expandafter{%

\noexpand#2%

\ifnum#3>0 {####1}\ifnum#3>1 {####2}\ifnum#3>2 {####3}%

\ifnum#3>3 {####4}\ifnum#3>4 {####5}\ifnum#3>5 {####6}%

\ifnum#3>6 {####7}\ifnum#3>7 {####8}\ifnum#3>8 {####9}%

\fi\fi\fi\fi\fi\fi\fi\fi\fi

##1%

}%

}

\@{#5}%

\edef\@##1{\endgroup

\noexpand\renewcommand#1\noexpand#2\ifcase#3 \else [#3]\fi

{##1\the\@temptokena}}%

\@{#4}%

%% \show#2%

}

Two possible error messages. Optimized. Second arg is the first letter from
the meaning string; it will be “u” if and only if the control sequence is undefined.

\long\def\patchcmdError#1#2{%

\begingroup

\toks@{Not redefinable}%

\ifcat\relax\noexpand#1% Is it a control sequence?

\begingroup

\let#1=?\ifx ?\relax % Is it "\relax"?

\endgroup % accept current value of \toks@

\else \endgroup

This is equivalent to the \@ifundefined test (true if arg 2 is either undefined
or its meaning is \relax).

\if\ifx\relax#1u\else #2\fi u%

\toks@{Not defined}%

\fi



4 THE PATCHCMD PACKAGE

\fi

\fi

Apply \string preemptively to arg 1 to prevent catastrophic failure if it hap-
pens to be \par (\PackageError isn’t defined as \long in older versions of
LATEX).

\edef\@{\endgroup

\noexpand\PackageError{patchcmd}{%

\the\toks@: \string#1}\noexpand\@ehd}%

\@

}

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput


