The \texttt{xfp} package

Floating Point Unit

The \LaTeX{} Project\footnote{E-mail: latex-team@latex-project.org}

Released 2022-01-12

The two functions provided by this package are part of the \LaTeX{} format starting with 2022-06-01 release. This package is therefore no longer needed and only provided to be able to process older documents loading.

This package provides a \LaTeX{}2e document-level interface to the \LaTeX{}3 floating point unit (part of \texttt{expl3}). It also provides a parallel integer expression interface for convenience.

The expandable command \texttt{\fpeval} takes as its argument a floating point expression and produces a result using the normal rules of mathematics. As this command is expandable it can be used where \TeX{} requires a number and for example within a low-level \texttt{\edef} operation to give a purely numerical result.

Briefly, the floating point expressions may comprise:

- Basic arithmetic: addition $x + y$, subtraction $x - y$, multiplication $x \cdot y$, division x/y, square root \sqrt{x}, and parentheses.
- Comparison operators: $x < y$, $x \leq y$, $x > y$, $x ! = y$ etc.
- Boolean logic: sign $\text{sign} x$, negation $\neg x$, conjunction $x \& \& y$, disjunction $x || y$, ternary operator $x ? y : z$.
- Exponentials: $\exp x$, $\ln x$, x^y.
- Integer factorial: $\text{fact} x$.
- Trigonometry: $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$ expecting their arguments in radians, and $\sin d x$, $\cos d x$, $\tan d x$, $\cot d x$, $\sec d x$, $\csc d x$ expecting their arguments in degrees.
- Inverse trigonometric functions: $\text{asin} x$, $\text{acos} x$, $\text{atan} x$, $\text{acot} x$, $\text{asec} x$, $\text{acsc} x$ giving a result in radians, and $\text{asind} x$, $\text{acosd} x$, $\text{atand} x$, $\text{acotd} x$, $\text{asecd} x$, $\text{acscd} x$ giving a result in degrees.
- Extrema: $\text{max}(x_1, x_2, \ldots)$, $\text{min}(x_1, x_2, \ldots)$, $\text{abs}(x)$.
- Rounding functions, controlled by two optional values, n (number of places, 0 by default) and t (behavior on a tie, NaN by default):
- \text{trunc}(x, n) \text{ rounds towards zero,}
- \text{floor}(x, n) \text{ rounds towards } -\infty,
- \text{ceil}(x, n) \text{ rounds towards } +\infty,
- \text{round}(x, n, t) \text{ rounds to the closest value, with ties rounded to an even value by default, towards zero if } t = 0, \text{towards } +\infty \text{ if } t > 0 \text{ and towards } -\infty \text{ if } t < 0.

- Random numbers: \text{rand}, \text{randint}(m, n).
- Constants: \text{pi}, \text{deg} (one degree in radians).
- Dimensions, automatically expressed in points, \text{e.g.}, \text{pc} is 12.
- Automatic conversion (no need for \texttt{\number}) of integer, dimension, and skip variables to floating points numbers, expressing dimensions in points and ignoring the stretch and shrink components of skips.
- Tuples: \((x_1, \ldots, x_n)\) that can be added together, multiplied or divided by a floating point number, and nested.

An example of use could be the following.

\LaTeX{} can now compute: \(\frac{\sin(3.5)}{2} + 2 \cdot 10^{-3} \).

The expandable command \texttt{\inteval} takes as its argument an integer expression and produces a result using the normal rules of mathematics. The operations recognised are +, -, *, and / plus parentheses. Division occurs with \textit{rounding}, and ties are rounded away from zero. As this command is expandable it can be used where \TeX{} requires a number and for example within a low-level \texttt{\edef} operation to give a purely numerical result.

An example of use could be the following.

\LaTeX{} can now compute: The sum of the numbers is $\inteval{1 + 2 + 3}$.

\begin{verbatim}
\inteval
\end{verbatim}

\textit{\inteval} takes as its argument an integer expression and produces a result using the normal rules of mathematics. The operations recognised are +, -, *, and / plus parentheses. Division occurs with \textit{rounding}, and ties are rounded away from zero. As this command is expandable it can be used where \TeX{} requires a number and for example within a low-level \texttt{\edef} operation to give a purely numerical result.

An example of use could be the following.

\LaTeX{} can now compute: The sum of the numbers is $\inteval{1 + 2 + 3}$.

\section*{Index}

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

\begin{verbatim}
\edef \inteval \fpeval \number
\end{verbatim}

\begin{tabular}{ll}
E & I \\
\edef & 1, 2 \ \inteval & 2 \\
F & N \\
\fpeval & 1 \ \number & 2
\end{tabular}

2