Residue theorem: Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G, then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k).$$

Maximum modulus principle: Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on \overline{G} which is analytic in G. Then

$$\max \{|f(z)| : z \in \overline{G}\} = \max \{|f(z)| : z \in \partial G\}.$$

Jacobi's identity: Define the theta function ϑ by

$$\vartheta(t) = \sum_{n=-\infty}^{\infty} \exp(-\pi n^2 t), \quad t > 0.$$

Then

$$\vartheta(t) = t^{-1/2} \vartheta(1/t).$$