
GNU tar: an archiver tool (*DRAFT*)
For version 1.11.8, June 1995

Jay Fenlason, Michael Bushnell
Amy Gorin, Francois Pinard

Copyright c© 1992, 1994, 1995 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Chapter 1: Introduction 1

1 Introduction

This chapter introduces of a few words which will recur all over this manual, like “archive”,
“member”, “name”, “unpack”, etc. It then explains who wrote GNU tar and its documen-
tation, and says where to send bug reports or comments.

1.1 What tar Does

The tar program is used to create and manipulate tar archives. An archive is a single file
which contains within it the contents of many files. In addition, the archive identifies the
names of the files, their owner, and so forth. (Archives record access permissions, user and
group, size in bytes, and last modification time. Some archives also record the file names
in each archived directory, as well as other file and directory information.)

The files inside an archive are called members. Within this manual, we use the term file
to refer only to files accessible in the normal ways (by ls, cat, and so forth), and the term
members to refer only to the members of an archive. Similarly, a file name is the name of
a file, as it resides in the filesystem, and a member name is the name of an archive member
within the archive.

Initially, tar archives were used to store files conveniently on magnetic tape. The name
‘tar’ comes from this use; it stands for: tape archiver. Despite the utility’s name, tar can
direct its output to any available device, as well as store it in a file or direct it to another
program via a pipe. tar may even access, as archives, remote devices or files.

You can use tar archives in many ways. We want to stress a few of them: storage,
backup or transportation.

Storage Often, tar archives are used to store related files for convenient file transfer
over a network. For example, the GNU Project distributes its software bundled
into tar archives, so that all the files relating to a particular program (or set
of related programs) can be transferred as a single unit.
A magnetic tape can store several files in sequence, but has no names for them,
just relative position on the tape. A tar archive or something like it is one
way to store several files on one tape and retain their names. Even when the
basic transfer mechanism can keep track of names, as FTP can, the nuisance of
handling multiple files, directories, and multiple links, makes tar archives an
attractive method.
Archive files are also used for long-term storage, which you can think of as
transportation from one time to another.

Backup Because the archive created by tar is capable of preserving file information and
directory structure, tar is commonly used for performing full and incremental
backups of disks, putting all together bunch of files possibly pertaining to many
users and different projects, to secure against accidental destruction of those
disks.
The GNU version of tar has special features that allow it to be used to make
incremental and full dumps of all the files in a filesystem.

Transportation
Archive files can be used for transporting a group of files from one system to
another: put all relevant files into an archive on one computer system, transfer

Chapter 1: Introduction 2

the archive to another, and extract the contents there. The basic transfer
medium might be magnetic tape, Internet FTP, or even electronic mail (though
you must encode the archive with uuencode or some functional equivalent in
order to transport it properly by mail). Both machines do not have to use the
same operating system, as long as they both support the tar program.
Piping one tar to another is an easy way to copy a directory’s contents from one
disk to another, while preserving the dates, modes, owners and link structure of
all the files therein. tar is also ideal for transferring directories over networks.
We sometimes see a copy of tar packing many files into one archive on one
machine, and sending the produced archive over a pipe over the network to
another copy of tar on another machine, reading its archive from the pipe and
unpacking all files there.

The tar program provides the ability to create tar archives, as well as for various other
kinds of manipulation. For example, you can use tar on previously created archives to
extract files, to store additional files, or to update or list files already stored. The term
extraction is used to refer to the process of copying an archive member into a file in the
filesystem. One might speak of extracting a single member. Extracting all the members of
an archive is often called extracting the archive. Also, the term unpack is used to refer to
the extraction of many or all the members of an archive.

Conventionally, tar archives are given names ending with ‘.tar’. This is not necessary
for tar to operate properly, but this manual follows the convention in order to get the
reader used to seeing it.

Occasionally, tar archives are referred to as tar files, archive members are referred to
as files, or entries. For people familiar with the operation of tar, this causes no difficulty.
However, this manual consistently uses the terminology above in referring to archives and
archive members, to make it easier to learn how to use tar.

1.2 GNU tar Authors

GNU tar was originally written by John Gilmore, and modified by many people. The
GNU enhancements were written by Jay Fenlason, and the whole package has been further
maintained by Michael Bushnell, then Francois Pinard, with the help of numerous and
kind users. I wish to stress that tar is somewhat a collective work, and owe much to all
those people who reported problems, offerred solutions and other insights, or shared their
thoughts and suggestions. Even if we lost track of many of those contributors, a partial list
can be found in the ‘THANKS’ file from the GNU tar distribution.

Jay Fenlason put together a draft of a GNU tar manual, also borrowing notes from the
original man page from John Gilmore, this draft has been distributed in tar versions 1.04
(or even before?) through 1.10, then withdrawn in version 1.11. Michael Bushnell and Amy
Gorin worked at a tutorial and manual for GNU tar, and left a few unpublished versions
of each. For version 1.11.8, Francois Pinard put together a new manual by grabbing from
all these sources and merging them in a single manual.

I heard that there is another manual in the works, by another team, which should say
everything about archives and related utilities, and which will surely be nicer than this one.
In the meantime, please consider this manual is a placeholder for tar option list and a few
random notes the maintainer wants to save somewhere, so users can read them. I wish

Chapter 1: Introduction 3

GNU tar users will be happier with this imperfect manual than with no documentation at
all.

1.3 Reporting bugs or suggestions

Please report problems or suggestions about this program to ‘bug-gnu-utils@prep.ai.mit.edu’.
You may also write directly, and less officially, to ‘pinard@iro.umontreal.ca’. There is a
lot of mail flowing about tar, and some accumulated in the past years. You might expect
a quick acknowledgement of your invoices, but the proper handling of your reports may be
delayed for a long while.

Many nodes of this document have not been revised much, these all start with a little
comment telling so. I accept documentation bug reports, of course. But please do not
torture yourself into systematically reporting all inadequacies for the unrevised nodes of
this document, unless you really feel like revising them.

1.4 Support considerations

This informal appendix is for the maintainer to share a few words and thoughts, while
considering GNU tar support.

1.4.1 Stability of GNU tar

User reports mainly fall in three categories: portability problems, execution bugs, and
requests for enhancements. For 1.11.X, the emphasis has been on solving portability prob-
lems, then trying to make GNU tar more solid. Enhancements have fairly low priority, yet
I sometime slip one in just for taking a kind of rest :-).

Many bugs have been corrected since 1.11.2. If you are curious, glance through
ChangeLog. I had only very few reports for things that might be new bugs not
present in 1.11.2. If you are really curious, and have access to the FSF machines, see
‘/gd/gnu/tar/rmail/’ hierarchy for all reports. Subdirectories ‘0’, ‘1’, ‘2’ and ‘3’
represent decreasing levels in priority. Most problems in there were reported against 1.10,
1.11 or 1.11.2 and still exist. The only thing I have consciously broken between 1.11.2
and 1.11.5 is ‘--record-number’ (‘-R’), because I wanted some modification to be done to
‘gnulib/error.c’, which is outside my control. This modification is now done, but I did
not revisit this area yet.

Here is my candid opinion. GNU tar has many areas of unreliability. See ‘BACKLOG’ for
the horrorful picture of the situation. Yet, for most users and usages, GNU tar looks very
dependable. For me as a mere user, GNU tar did not give problems in years. And I think
it offers a lot of functionality. Many problems have been solved since 1.11.2, even if true
that many more remain to be solved. I’m not discouraged myself and feel positive about
maintaining it, simply because when I bite, that usually lasts for quite long. I might not
have all the time I would want, but I surely have good will and am happily surrounded by
many collaborating pretesters. So, I still think GNU tar is on the winning side in the long
run.

1.4.2 Should we rewrite the thing?

Working in tar sources is not always pleasurable. The problem is that tar sources are
very fragile. Just cleaning around breaks things. The current sequence of prereleases is for

Chapter 1: Introduction 4

slowly trying to solidify it, so tar becomes more maintainable. I think that the ugliness of
sources could be corrected to a certain extent, too.

A few efforts to replace GNU tar have been done already and it seems that all failed
so far. A toy program, for me, is another kind of failure. I think people underestimate
the number of portability problems such a program can raise. This is not only a matter
of programming style, there is really a wide variability in systems out there. GNU tar
has a long history, met a rich variety of porting problems, machine peculiarities, system
idiosyncrasies, which are unrelated to programming style. My own opinion is that we cannot
dismiss all the experience gleaned along the years, and saved (if not hidden) in GNU tar
sources, pretending to start anew, from scratch.

Even if a new program replacing GNU tar would be marvelous, GNU tar stalled for a
few years waiting for such a program, and we are now faced to nothing, with hundreds of
user reports to catch on. We need a working archiver now, and cannot live on promises.
Any new program will take hundreds of user reports, and many years, to stabilize enough
to become a plausible tar replacement. I rather plan to clean up GNU tar. This alone is a
big task for me, because GNU tar coding is not ideal, and I have to find ways to transform
it slowly, while having it fully working at all times.

1.4.3 Why maintaining it?

I confess that I am a little afraid of tar maintainance. It is difficult for many reasons, the
first tree being more evident than the others:

• the algorithmic design was initially oriented for machines having very small memory,
it was later much adapted for new features without doing everything necessary for the
whole to stay clean;

• the wide visibility of tar forces many stunts at portability;

• GNU tar has to be sensitive to file systems and device variance.

• GNU central has been seduced by some users promising to write wonderful tar re-
placements, which never came, so development has been put aside for years, while bug
reports accumulated;

• the tar manual has been withdrawn, promising users a fine replacement for it, so
raising their expectations;

• maintenance was once split between four maintainers (one for tar, one for mt, another
for scripts, and a team for documentation), and also, ‘rtapelib.[ch]’ from tar is used
in cpio, and synchronisation has not always been easy.

However, even if difficult, I do feel like doing a careful cleanup, so tar would become less
painful to maintain after a while (and less subject to criticism). And besides, I’m surrounded
by a marvelous team of pretesters and by many other collaborating users, which I should
learn to serve better. Getting more experience with maintainance in GNU, I hope being
careful enough modifying tar so not hurting users too much, being aware that tar is a
sensitive product in GNU. Once cleaned up, I might be happy to return tar maintainance
to someone else. . .

tar requires more work alone that all my other things together, and I have to resist being
swallowed whole in it. This resistance makes tar development somewhat slower. Sorry!

Chapter 1: Introduction 5

1.4.4 MSDOS and other systems?

GNU does not necessarily support non-UNIX systems, that is to say, MSDOS is not sup-
ported. It is very true that ports can sometimes be very intrusive in the sources, cluttering
them significantly with conditionals and extra code, and distract GNU maintainers from
the main development line.

However, a special argument might be made for tar. Both tar and gzip are the required
tools for getting something out of the GNU archives, tar should be more opened to ports
than the GNU rule states. Jean-loup did a tremendous job at porting gzip on smaller
systems. It would be comfortable that a few other GNU tools be available on MSDOS
and others, among which tar. These ports for tar have theoretically no priority at all.
Nevertheless, a port is interesting, because tar is so central in GNU distributions, and
gzip is already ported.

Some porting efforts have been done in the past. There are traces of a few exchanges on
this subject in ‘BACKLOG’. GNU tar sources have been modified a lot recently at a cosmetic
level, and I would certainly have a hard time integrating diffs provided by someone else. If
people want porting tar to MSDOS or other non-UNIX systems, they should be committed
in supporting their ports after the fact, as I cannot do it myself.

Chapter 2: Tutorial Introduction to tar 6

2 Tutorial Introduction to tar

This chapter guides you through some basic examples of tar operations. If you already
know how to use some other version of tar, then you probably don’t need to read this
chapter. This chapter omits complicated details about many of the ways tar works. See
later chapters for full information.

Before proceeding further with this tutorial chapter, be sure you understand already and
clearly what is meant by “archive” and “archive member”.

FIXME: xref What tar Does

.

This chapter guides you through some basic examples of tar operations. In the examples,
the lines you should type are preceded by a ‘%’, which is a typical shell prompt. We use
mnemonic forms of operations and options in the examples, and in discussions in the text,
but short forms produce the same result.

Most of the options to tar come in both long forms and short forms. The options
described in this tutorial have the following abbreviations (except ‘--delete’, which has
no shorthand form):

‘--create’
‘-c’

‘--list’ ‘-t’

‘--extract’
‘-x’

‘--append’
‘-r’

‘--verbose’
‘-v’

‘--file=archive-name ’
‘-f archive-name ’

These options make typing long tar commands easier. For example, instead of typing

tar --create --file=/tmp/afiles.tar --verbose apple angst asparagus

you can type

tar -c -f /tmp/afiles.tar -v apple angst asparagus

For more information on option syntax,

FIXME: ref Invoking tar

. In discussions in the text, when we present some mnemonic option, we also give the
corresponding short option within parentheses.

Chapter 2: Tutorial Introduction to tar 7

2.1 How to Create Archives

(This message will disappear, once this node revised.)
To create a new archive, use the ‘--create’ (‘-c’) option to tar. You can use options to

specify the name and format of the archive (as well as other characteristics), and you can
use file name arguments to specify which files and directories are to be put in the archive.
FIXME: xref Creating

, for more information about the ‘--create’ (‘-c’) operation.
To create a new archive, use the ‘--create’ (‘-c’) option to tar. You should generally

use the ‘--file=archive-name ’ (‘-f archive-name ’) option to specify the name the tar
archive will have. Then specify the names of the files you wish to place in the new archive.
For example, to place the files ‘apple’, ‘angst’, and ‘asparagus’ into an archive named
‘afiles.tar’, use the following command:

tar --create --file=afiles.tar apple angst asparagus

The order of the arguments is not important when using mnemonic option style. You
could also say:

tar apple --create angst --file=afiles.tar asparagus

This order is harder to understand however. In this manual, we will list the arguments
in a reasonable order to make the commands easier to understand, but you can type them
in any order you wish.

If you don’t specify the names of any files to put in the archive, then tar will create an
empty archive. So, the following command will create an archive with nothing in it:

tar --create --file=empty-archive.tar

Whenever you use ‘--create’ (‘-c’), tar will erase the current contents of the file named
by ‘--file=archive-name ’ (‘-f archive-name ’) if it exists. To add files to an existing
archive, you need to use a different option.
FIXME: xref Adding to Archives, for information on how to do this.

When an archive is created through ‘--create’ (‘-c’), the member names of the members
of the archive are exactly the same as the file names as you typed them in the tar command.
So, the member names of ‘afiles’ (as created by the first example above) are ‘apple’,
‘angst’, and ‘asparagus’. However, suppose an archive were created with this command:

tar --create --file=bfiles.tar ./balloons baboon ./bodacious

Then, the three files ‘balloons’, ‘baboon’, and ‘bodacious’ would get placed in the
archive (because ‘./’ is a synonym for the current directory), but their member names
would be ‘./balloons’, ‘baboon’, and ‘./bodacious’.

If you want to see the progress of tar as it writes files into the archive, you can use the
‘--verbose’ (‘-v’) option.

If one of the files named with ‘--create’ (‘-c’) is a directory, then the operation of tar
is more complicated.
FIXME: xref Tar and Directories,
FIXME: the last section of this tutorial, for more information.

If you don’t specify the ‘--file=archive-name ’ (‘-f archive-name ’) option, then tar
will use a default. Usually this default is some physical tape drive attached to your machine.

Chapter 2: Tutorial Introduction to tar 8

If there is no tape drive attached, or the default is not meaningful, then tar will print an
error message. This error message might look roughly like one of the following:

tar: can’t open /dev/rmt8 : No such device or address
tar: can’t open /dev/rsmt0 : I/O error

If you get an error like this, mentioning a file you didn’t specify (‘/dev/rmt8’
or ‘/dev/rsmt0’ in the examples above), then tar is using a default value for
‘--file=archive-name ’ (‘-f archive-name ’). You should generally specify a
‘--file=archive-name ’ (‘-f archive-name ’) argument whenever you use tar, rather
than relying on a default.

To create a new archive, use the ‘--create’ (‘-c’) option to tar. You can use options to
specify the name and format of the archive (as well as other characteristics), and you can
use file name arguments to specify which files to put in the archive. If you don’t use any
options or file name arguments, tar will use default values.
FIXME: xref Creating Example

, for more information about the ‘--create’ (‘-c’) option.

2.1.1 Creating Archives of Files

(This message will disappear, once this node revised.)
This example shows you how to create an archive file in your working directory containing

other files in the same directory. The three files you archive in this example are called
‘blues’, ‘folk’, and ‘jazz’. The archive file is called ‘records’. While the archive in this
example is written to the file system, it could also be written to tape. (If you want to follow
along with this and future examples, create a practice subdirectory containing files with
these names. To create the directory, type ‘mkdir practice’ at the system prompt. You
can create the files using a text editor, such as emacs).

While in the directory containing the files you want to archive, list the directory’s con-
tents.

Type:
% cd practice
% ls

The system responds:
blues folk jazz
%

This is to check that the files to be archived do in fact exist in the working directory, and to
check that the archive name you have chosen isn’t already in use. If it is, tar will overwrite
the old archive and its contents will be lost.

Then,
• Create a new archive by giving ‘--create’ (‘-c’) to tar.
• Explicitly name the archive file being created—‘--file=archive-name ’ (‘-f archive-

name ’). If you don’t use this option tar will write the archive to the default storage
device, which varies from system to system.

• Specify which files to put into the archive. If you don’t specify any file name arguments,
tar will archive everything in the working directory.

Chapter 2: Tutorial Introduction to tar 9

Type:
% tar --create --file=records blues folk jazz

If you now list the contents of the working directory (‘ls’), you will find the archive file
listed as well as the files you saw previously.

% ls
blues folk jazz records
%

This example shows you how to create an archive file in the working directory containing
other files in the working directory. The three files you archive in this example are called
‘blues’, ‘folk’, and ‘jazz’. The archive file is called ‘records’. While the archive in this
example is written to the file system, it could also be written to any other device.

(If you want to follow along with this and future examples, create a directory called
‘practice’ containing files called ‘blues’, ‘folk’ and ‘jazz’. To create the directory, type
‘mkdir practice’ at the system prompt. It will probably be easiest to create the files using
a text editor, such as Emacs.)

First, change into the directory containing the files you want to archive:
% cd practice

‘~/practice’ is now your working directory.
Then, check that the files to be archived do in fact exist in the working directory, and

make sure there isn’t already a file in the working directory with the archive name you
intend to use. If you specify an archive file name that is already in use, tar will overwrite
the old file and its contents will be lost.

To list the names of files in the working directory, type:
% ls

The system responds:
blues folk jazz
%

Then,
• Create a new archive by giving the ‘--create’ (‘-c’) option to tar.
• Explicitly name the archive file being created—‘--file=archive-name ’ (‘-f archive-

name ’). If you don’t use this option tar will write the archive to the default storage
device, which varies from system to system.
FIXME: this syntax may change. OK now–check before printing
tar interprets archive file names relative to the working directory. Make sure you have
write access to the working directory before using tar.

• Specify which files to put into the archive (tar interprets file names relative to the
working directory). If you don’t use any name arguments, tar will archive everything
in the working directory.

Type:
% tar --create --file=records blues folk jazz

If you now list the contents of the working directory (‘ls’), you will find the archive file
listed as well as the files you saw previously.

Chapter 2: Tutorial Introduction to tar 10

% ls
blues folk jazz records
%

2.1.2 Using tar in Verbose Mode

(This message will disappear, once this node revised.)
If you include the ‘--verbose’ (‘-v’) option on the command line, tar will list the files

it is acting on as it is working. The example above in verbose mode would be:
% tar --create --file=records --verbose blues folk jazz
blues
folk
jazz

The first line, which is preceeded by a ‘%’, is the command line. The lines after the first line
are generated by tar as it works. In the following examples we usually use verbose mode,
though it is almost never required.

If you include the ‘--verbose’ (‘-v’) option on the command line, tar will list the files
it is acting on as it is working. In verbose mode, the creation example above would appear
as:

% tar --create --file=records --verbose blues folk jazz
blues
folk
jazz

The first line is the command typed in by the user. The remaining lines are generated
by tar. In the following examples we usually use verbose mode, though it is almost never
required.

2.1.3 How to Archive Directories

(This message will disappear, once this node revised.)
When the names of files or members specify directories, the operation of tar is more

complex. Generally, when a directory is named, tar also operates on all the contents of the
directory, recursively. Thus, to tar, the file name ‘/’ names the entire file system.

To archive the entire contents of a directory, use ‘--create’ (‘-c’) or ‘--append’ (‘-r’)
as usual, and specify the name of the directory. For example, to archive all the contents of
the current directory, use ‘tar --create --file=archive-name .’. Doing this will give the
archive members names starting with ‘./’. To archive the contents of a directory named
‘foodir’, use ‘tar --create --file=archive-name foodir’. In this case, the member
names will all start with ‘foodir/’.

If you give tar a command such as ‘tar --create --file=foo.tar .’, it will report
‘tar: foo.tar is the archive; not dumped’. This happens because the archive ‘foo.tar’
is created before putting any files into it. Then, when tar attempts to add all the files in
the directory ‘.’ to the archive, it notices that the file ‘foo.tar’ is the same as the archive,
and skips it. (It makes no sense to put an archive into itself.) GNU tar will continue in
this case, and create the archive as normal, except for the exclusion of that one file. Other
versions of tar, however, are not so clever, and will enter an infinite loop when this happens,

Chapter 2: Tutorial Introduction to tar 11

so you should not depend on this behavior. In general, make sure that the archive is not
inside a directory being dumped.

When extracting files, you can also name directory archive members on the command
line. In this case, tar extracts all the archive members whose names begin with the name
of the directory. As usual, tar is not particularly clever about interpreting member names.
The command ‘tar --extract --file=archive-name .’ will not extract all the contents
of the archive, but only those members whose member names begin with ‘./’.

2.1.4 Creating an Archive from the Superior Directory

(This message will disappear, once this node revised.)
You can archive a directory by specifying its directory name as a file name argument to

tar. The files in the directory will be archived relative to the working directory, and the
directory will be re-created along with its contents when the archive is extracted.

To archive a directory, first move to its superior directory. If you have been following
the tutorial, you should type:

% cd ..
%

Once in the superior directory, you can specify the subdirectory as a file name argument.
To store the directory ‘practice’ in the archive file ‘music’, type:

% tar --create --verbose --file=music practice

tar should output:
practice/
practice/blues
practice/folk
practice/jazz
practice/records

Note that the archive thus created is not in the subdirectory ‘practice’, but rather in
the working directory—the directory from which tar was invoked. Before trying to archive
a directory from its superior directory, you should make sure you have write access to the
superior directory itself, not only the directory you are trying archive with tar. Trying
to store your home directory in an archive by invoking tar from the root directory will
probably not work.
FIXME: xref absolute-names

(Note also that ‘records’, the original archive file, has itself been archived. tar will
accept any file as a file to be archived, regardless of its content. When ‘music’ is extracted,
the archive file ‘records’ will be re-written into the file system).

You can store a directory in an archive by using the directory name as a file name
argument to tar. When you specify a directory file, tar archives the directory file and all
the files it contains. The names of the directory and the files it contains are stored in the
archive relative to the current working directory–when the directory is extracted they will
be written into the file system relative to the working directory at that time.
FIXME: add an xref to –absolute-names

To archive a directory, first move to its superior directory. If you have been following
the tutorial, you should type:

Chapter 2: Tutorial Introduction to tar 12

% cd ..
%

Once in the superior directory, specify the subdirectory using a file name argument. To
store the directory file ‘~/practice’ in the archive file ‘music’, type:

% tar --create --verbose --file=music practice

tar should respond:
practice/
practice/blues
practice/folk
practice/jazz
practice/records

Note that ‘~/practice/records’, another archive file, has itself been archived. tar will
accept any file as a file to be archived, even an archive file.
FIXME: symbolic links and changing directories are now in main body,
FIXME: not in tutorial.

2.1.5 Comparing Files in an Archive with Files in the File System

(This message will disappear, once this node revised.)
While the ‘--list’ (‘-t’) operation with the ‘--verbose’ (‘-v’) option specified is useful

in keeping files in the archive current with files in the file system (by allowing the user
to compare size and modification dates), it is simpler to have tar itself compare file at-
tributes and report back on file differences. To do so, use the ‘--compare’ (‘-d’) or ‘--diff’
operation.

The ‘--compare’ (‘-d’) operation, as its name implies, causes tar to compare files and
directories in the archive with their counterparts (files of the same name) in the file system,
and report back differences in file size, mode, owner and modification date. When perform-
ing the ‘--compare’ (‘-d’) operation, tar acts only on files actually in the archive—it will
ignore files in the active file system that do not exist in the archive. If tar with ‘--compare’
(‘-d’) specified is given, as a file name argument, the name of a file that does not exist in
the archive, it will return an error message.

To compare the files in the practice directory with their counterparts in the archive file
‘records’, in the same directory, you would, while in the ‘practice’ directory:
• Invoke tar and specify the operation to compare files in the archive with their coun-

terparts in the file system—‘--compare’ (‘-d’) or ‘--diff’.
• Specify the name of the archive where the files to be compared are stored—

‘--file=archive-name ’ (‘-f archive-name ’).
• Specify the names of the files or directories to be compared, as file name arguments (in

this case, you are comparing all the files in the archive, so nothing need be specified).
% tar --compare --file=records
%

While it looks like nothing has happened, tar has, in fact, done the comparison—and found
nothing to report. The same example with the ‘--verbose’ (‘-v’) option specified would
list the files in the archive as they are being compared with their counterparts of the same
name:

Chapter 2: Tutorial Introduction to tar 13

% tar --compare --verbose --file=records
blues
folk
jazz
%

If tar had had anything to report, it would have done so as it was comparing each file.
If you remove the file ‘jazz’ from the file system (‘rm jazz’), and modify the file ‘blues’
(for instance, by adding text to it with a text editor), the above example would look like:

% tar --compare --verbose --file=records
blues
blues: mod time differs
blues: size differs
folk
jazz
jazz: does not exist
%

You should note again that while ‘--compare’ (‘-d’) does cause tar to report back on
files in the archive that do not exist in the file system, tar will ignore files in the active file
system that do not exist in the archive. To demonstrate this, create a file in the ‘practice’
directory called ‘rock’ (using any text editor). If you generate a directory listing the new
file will appear.

% ls
blues folk records rock

If you run the ‘--compare’ (‘-d’) example again you will obtain the following:
% tar --compare --verbose --file=records
blues
blues: mod time differs
blues: size differs
folk
jazz
jazz: does not exist
%

tar ignores the file ‘rock’ because tar is comparing files in the archive to files in the file
system, not vice versa. If ‘rock’ had been passed to tar explicitly (as a file name argument),
tar would have returned an error message, as follows:

% tar --compare --verbose --file=records rock
tar: rock not found in archive
%

To compare the attributes of archive members with the attributes of their counterparts
in the file system, use the ‘--compare’ (‘-d’) or ‘--diff’operation. While you could use
‘--list --verbose’ (‘-tv’) to manually compare some file attributes, it is simpler to have
tar itself compare file attributes and report back on file differences.
FIXME: "manually"? suggestions?

The ‘--compare’ (‘-d’) operation, as its name implies, compares archive members with
files of the same name in the file system, and reports back differences in file size, mode,

Chapter 2: Tutorial Introduction to tar 14

owner and modification date. ‘tar +compare’ acts only on archive members–it ignores files
in the file system that are not stored in the archive. If you give with ‘--compare’ (‘-d’) a
name argument that does not correspond to the name of an archive member, tar responds
with an error message.

To compare archive members in the archive file ‘records’ with files in the ‘~/practice’
directory, first change into the ‘practice’ directory. Then:

• Invoke tar and specify the ‘--compare’ (‘-d’) operation—‘--compare’ (‘-d’) or
‘--diff’.

• Specify the archive where the files to be compared are stored—‘--file=archive-name ’
(‘-f archive-name ’).

• Specify the archive members to be compared. (In this example you are comparing all
the archive members in the archive. Since this is the default, you don’t need to use
any file name arguments).

% tar --compare --file=records
%

While it looks like nothing has happened, tar has, in fact, done the comparison—and
found nothing to report.

Use the ‘--verbose’ (‘-v’) option to list the names of archive members as they are being
compared with their counterparts of the same name in the file system:

% tar --compare --verbose --file=records
blues
folk
jazz
%

If tar had had anything to report, it would have done so as it was comparing each file.

If you remove the file ‘jazz’ from the file system (‘rm jazz’), and modify the file ‘blues’
(for instance, by adding text to it with an editor such as Emacs), the above example would
look like:

% tar --compare --verbose --file=records
blues
blues: mod time differs
blues: size differs
folk
jazz
jazz: does not exist
%

Note again that while ‘--compare’ (‘-d’) reports the names of archive members that do
not have counterparts in the file system, ‘--compare’ (‘-d’) ignores files in the file system
that do not have counterparts in the archive. To demonstrate this, create a file in the
‘practice’ directory called ‘rock’ (using any text editor). The new file appears when you
list the directory’s contents:

FIXME: Given an example

Chapter 2: Tutorial Introduction to tar 15

2.1.6 Using Compare from the Superior Directory

(This message will disappear, once this node revised.)
In addition to using ‘--compare’ (‘-d’) to compare individual files in an archive with

their counterparts in the file system, you can use ‘--compare’ (‘-d’) to compare archived
directories with their counterparts in the active file system. You could re-create the examples
above using your home directory as the working directory, and using the archive file ‘music’
(in which is stored the ‘practice’ directory) instead of the archive file ‘records’.

First, change into the home directory (‘cd ..’). Then, try the above example using
‘music’ as the specified archive file, and the ‘practice’ subdirectory as a file name argument.

% tar --compare --verbose --file=music practice
practice
practice/blues
practice/blues: mod time differs
practice/blues: size differs
practice/folk
practice/jazz
practice/jazz: does not exist
practice/records

In addition to using ‘--compare’ (‘-d’) to compare text files, you can use ‘--compare’
(‘-d’) to compare directories. To illustrate this, re-create the examples above using your
home directory as the working directory, and using the archive file ‘~/music’ instead of the
archive file ‘~/practice/records’.

First, change into your home directory (‘cd ~’). Then, try the above example using
‘music’ as the specified archive file, and ‘practice’ as a file name argument.

% tar --compare --verbose --file=music practice

If you have been following along with the tutorial, tar will respond:
practice
practice/blues
practice/blues: mod time differs
practice/blues: size differs
practice/folk
practice/jazz
practice/jazz: does not exist
practice/records

2.2 How to List Archives

(This message will disappear, once this node revised.)
Use ‘--list’ (‘-t’) to print the names of members stored in an archive. Use a

‘--file=archive-name ’ (‘-f archive-name ’) option just as with ‘--create’ (‘-c’) to
specify the name of the archive. For example, the archive ‘afiles.tar’ created in the last
section could be examined with the command ‘tar --list --file=afiles.tar’. The
output of tar would then be:

apple
angst

Chapter 2: Tutorial Introduction to tar 16

asparagus

The archive ‘bfiles.tar’ would list as follows:

./baloons
baboon
./bodacious

(Of course, ‘tar --list --file=empty-archive.tar’ would produce no output.)

If you use the ‘--verbose’ (‘-v’) option with ‘--list’ (‘-t’), then tar will print out a
listing reminiscent of ‘ls -l’, showing owner, file size, and so forth.

You can also specify member names when using ‘--list’ (‘-t’). In this case, tar will
only list the names of members you identify. For example, ‘tar --list --file=afiles.tar
apple’ would only print ‘apple’. It is essential when specifying member names to tar that
you give the exact member names. For example, ‘tar --list --file=bfiles baloons’
would produce no output, because there is no member named ‘baloons’, only one named
‘./baloons’. While the file names ‘baloons’ and ‘./baloons’ name the same file, mem-
ber names are compared using a simplistic name comparison, in which an exact match is
necessary.

2.2.1 Listing the Contents of an Archive

(This message will disappear, once this node revised.)

You can list the contents of the archive you just created with another option of tar:
‘--list’ (‘-t’). To list the contents of an archive, type:

% tar --list --file=records

tar will respond:

blues folk jazz

FIXME: xref Listing Archive Contents

, for a more detailed tutorial of the ‘--list’ (‘-t’) operation.

FIXME: xref Listing Contents

for more information about the ‘--list’ (‘-t’) operation.

FIXME:

You can use ‘--list’ (‘-t’) to output a list of the files in an archive. If you use file
name arguments with this operation, tar will look in the archive for the files specified and
display their names only if they are, in fact, stored. You can use ‘--list’ (‘-t’) with the
‘--verbose’ (‘-v’) option to find out the attributes (owner, size, etc.) of stored files.

You can list the contents of an archive with another operation of tar: ‘--list’ (‘-t’).
To list the contents of the archive you just created, type:

% tar --list --file=records

tar will respond:

blues folk jazz

FIXME: xref Listing Archive Contents

, for a more detailed tutorial of the ‘--list’ (‘-t’) operation.

Chapter 2: Tutorial Introduction to tar 17

FIXME: xref Listing Contents
, for more information about the ‘--list’ (‘-t’) operation.
In a previous example, you created the archive ‘music’ in the home directory. To list

the contents of ‘music’:
• List the contents of an archive by using ‘--list’ (‘-t’) with tar.
• Specify the name of the archive to be listed—‘--file=archive-name ’ (‘-f archive-

name ’).

Thus:
% tar --list --file=music
practice/
practice/blues
practice/folk
practice/jazz
practice/records

Use ‘--list’ (‘-t’) to print the names of files stored in an archive. If you use file name
arguments with this operation, tar prints the names of the specified files if they are stored
in the archive. If you use a directory name as a file name argument, tar also prints the
names of all underlying files, including sub-directories. If you use no file name arguments,
tar prints the names of all the archive members.

You can use ‘--list’ (‘-t’) with the ‘--verbose’ (‘-v’) option to print archive members’
attributes (owner, size, etc.).

To list the names of files stored in an archive, use the ‘--list’ (‘-t’) operation of tar.
In a previous example, you created the archive ‘~/music’. To list the contents of ‘music’,

while in your home directory:
• List the contents of an archive by using [No value for “–list”] with tar.
• Specify the archive to be listed—‘--file=archive-name ’ (‘-f archive-name ’).

Thus:
% tar --list --file=music
practice/
practice/blues
practice/folk
practice/jazz
practice/records

2.2.2 Getting Additional File Information

(This message will disappear, once this node revised.)
When you specify the ‘--verbose’ (‘-v’) option in conjunction with ‘--list’ (‘-t’),

tar will print additional information about the files being listed (file protection, owner and
group ID, size, and date and time of creation). The example above, in verbose mode, would
be:

% tar --list --verbose --file=music
drwxrwxrwx myself/user 0 May 31 21:49 1990 practice/

Chapter 2: Tutorial Introduction to tar 18

-rw-rw-rw- myself/user 42 May 21 13:29 1990 practice/blues
-rw-rw-rw- myself/user 62 May 23 10:55 1990 practice/folk
-rw-rw-rw- myself/user 40 May 21 13:30 1990 practice/jazz
-rw-rw-rw- myself/user 10240 May 31 21:49 1990 practice/records
%

Note that using ‘--verbose’ (‘-v’) with ‘--list’ (‘-t’) does not cause tar to print the
names of files as they are being acted on, though the ‘--verbose’ (‘-v’) option will have
this effect with all other operations.

To get more information when you list the names of files stored in an archive, specify
the ‘--verbose’ (‘-v’) option in conjunction with ‘--list’ (‘-t’).

tar will print archive member’s file protection, owner and group ID, size, and date and
time of creation.

For example:
% tar --list --verbose --file=music
drwxrwxrwx myself/user 0 May 31 21:49 1990 practice/
-rw-rw-rw- myself/user 42 May 21 13:29 1990 practice/blues
-rw-rw-rw- myself/user 62 May 23 10:55 1990 practice/folk
-rw-rw-rw- myself/user 40 May 21 13:30 1990 practice/jazz
-rw-rw-rw- myself/user 10240 May 31 21:49 1990 practice/records
%

Note that when you use ‘--verbose’ (‘-v’) with ‘--list’ (‘-t’), tar doesn’t print the
names of files as they are being acted on, though the ‘--verbose’ (‘-v’) option will have
this effect when used with all other operations.

2.2.3 List A Specific File in an Archive

(This message will disappear, once this node revised.)
FIXME:

To to see if a particular file is in an archive, specify the name of the file in question as
a file name argument while specifying the ‘--list’ (‘-t’) operation. For example, if you
wanted to see if the file ‘folk’ were in the archive file ‘music’, you would:
• Invoke tar, and specify the operation to list the contents of an archive—‘--list’ (‘-t’).
• Specify the name of the archive file to be acted on—‘--file=archive-name ’ (‘-f

archive-name ’).
• Specify the name of the file tar is to look for, as a file name argument. Because tar

preserves paths, file names must be specified as they appear in the archive (ie.. as they
are relative to the directory from which the archive was created).
FIXME: xref -P

Type:
% tar --list --file=music practice/folk

tar responds:
practice/folk

If the file were not in the archive (for example, the file ‘practice/rock’), the example above
would look like:

Chapter 2: Tutorial Introduction to tar 19

% tar --list --file=music practice/rock
tar: practice/rock not found in archive

The ‘--verbose’ (‘-v’) option does not have any effect on execution of the ‘--list’
(‘-t’) operation when you have specified file name arguments.
FIXME: this is a bug (?)

To to see if a particular file is in an archive, use the name of the file in question as a file
name argument while specifying the ‘--list’ (‘-t’) operation. For example, to see whether
the file ‘folk’ is in the archive file ‘music’, do the following:
• Invoke tar, and specify the ‘--list’ (‘-t’) operation.
• Specify the archive file to be acted on—‘--file=archive-name ’ (‘-f archive-name ’).
• Specify the files to look for, by typing their names as file name arguments. You have to

type the file name as it appears in the archive (normally, as it is relative to the relative
to the directory from which the archive was created).
FIXME: xref absolute-names

Type:
% tar --list --file=music practice/folk

tar responds:
practice/folk

If the file were not stored in the archive (for example, the file ‘practice/rock’), the
example above would look like:

% tar --list --file=music practice/rock
tar: practice/rock not found in archive

If you had used ‘--verbose’ (‘-v’) mode, the example above would look like:
% tar --list --file=music practice/folk
-rw-rw-rw- myself/user 62 May 23 10:55 1990 practice/folk

2.2.4 Listing the Contents of a Stored Directory

(This message will disappear, once this node revised.)
To get information about the contents of an archived directory, use the directory name

as a file name argument in conjunction with ‘--list’ (‘-t’). To find out file attributes,
include the ‘--verbose’ (‘-v’) option.

For example, to find out about files in the directory ‘practice’, in the archive file ‘music’,
type:

% tar --list --file=music practice

tar responds:
drwxrwxrwx myself/user 0 May 31 21:49 1990 practice/
-rw-rw-rw- myself/user 42 May 21 13:29 1990 practice/blues
-rw-rw-rw- myself/user 62 May 23 10:55 1990 practice/folk
-rw-rw-rw- myself/user 40 May 21 13:30 1990 practice/jazz
-rw-rw-rw- myself/user 10240 May 31 21:49 1990 practice/records

When you use a directory name as a file name argument, tar acts on all the files
(including sub-directories) in that directory.

Chapter 2: Tutorial Introduction to tar 20

2.3 How to Extract Members from an Archive

(This message will disappear, once this node revised.)
In order to extract members from an archive, use the ‘--extract’ (‘-x’) option. Specify

the name of the archive with ‘--file=archive-name ’ (‘-f archive-name ’). To extract
specific archive members, give their member names as arguments. It essential to give their
exact member name, as printed by ‘--list’ (‘-t’). This will create a copy of the archive
member, with a file name the same as its name in the archive.

Keeping the example of the two archives created at the beginning of this tutorial, ‘tar
--extract --file=afiles.tar apple’ would create a file ‘apple’ in the current directory
with the contents of the archive member ‘apple’. It would remove any file named ‘apple’
already present in the directory, but it would not change the archive in any way.

Remember that specifying the exact member name is important. ‘tar --extract
--file=bfiles.tar baloons’ will fail, because there is no member named ‘baloons’.
To extract the member named ‘./baloons’ you would need to specify ‘tar --extract
--file=bfiles.tar ./baloons’. To find the exact member names of the members of an
archive, use ‘--list’ (‘-t’).
FIXME: xref Listing Archives.

If you do not list any archive member names, then ‘--extract’ (‘-x’) will extract all the
members of the archive.

If you give the ‘--verbose’ (‘-v’) option, then ‘--extract’ (‘-x’) will print the names
of the archive members as it extracts them.

2.3.1 Extract Files from an Archive into Your Current Directory

(This message will disappear, once this node revised.)
Obviously, the ultimate goal of tar users is to eventually get their files back. To do this,

use the ‘--extract’ (‘-x’) or ‘--get’ operation. ‘--extract’ (‘-x’) can be used to retrieve
individual files from an archive, or can be used to write all the files in the archive back into
the file system.

In the previous example you concatenated two archives, ‘music’, and
‘practice/records’. To now retrieve the complete contents of ‘music’ (the
target file in the concatenation process), you would, from the home directory:
• Invoke tar and specify the operation to extract files from an archive (‘--extract’ (‘-x’)

or ‘--get’.
• Specify the name of the archive the files will be extracted from—‘--file=archive-

name ’ (‘-f archive-name ’).
• Specify the names of the files you wish to extract, as file name arguments (in this case

you want to extract the entire archive, so you don’t need to specify anything).
% tar --extract --file=music
tar: Could not make directory practice : File exists

Because the files stored originally in ‘music’ were stored as files in a subdirectory (not
as files in the working directory), they are stored in the archive with a leading directory
name—tar, in restoring them, has tried to recreate that directory and failed: the directory
already exists. The extraction has not been aborted, however. If you now change into the

Chapter 2: Tutorial Introduction to tar 21

‘practice’ directory and generate a directory listing, you will find that ‘jazz’, which we
removed in an earlier example, has been resurrected.

% cd practice
% ls
blues classical folk jazz records rock

If you look more closely at the files in the directory, however, you will find that ‘blues’
and ‘folk’ are, in fact, the original versions of the file, which were stored in ‘music’ at the
beginning of the tutorial. tar, in extracting the original files from ‘music’, has overwritten
the existing files in the file system.

While the newer versions of the files were stored in ‘records’ above, they can no longer
be extracted from it. ‘records’ too was archived by tar when the ‘practice’ directory was
stored in the archive file ‘music’, and was restored to its older incarnation when the files
in ‘practice’ were overwritten. However, the newer version of ‘records’ was concatenated
with ‘music’. The contents of the newer version of ‘records’, therefore, should have been
extracted when all the contents of ‘music’ were extracted. They were. tar has restored
them into the working directory using the names with which they were originally stored.
Because they were originally stored as part of ‘records’, in the ‘practice’ directory, they
had no preceeding directory stored as part of their file names. To find the latest versions
of ‘blues’, ‘folk’, ‘jazz’, ‘rock’ and ‘classical’, look in your home directory.

You may wish to restore the files in your ‘practice’ directory to their last state before
we extracted the files from ‘music’. Rather than moving the files from your home directory
to the ‘practice’ subdirectory, you can run the same extraction procedure as above using
the ‘practice’ subdirectory as your working directory:

% cd practice
% tar --extract --verbose --file=~/music
practice/
practice/blues
practice/folk
practice/jazz
practice/records
blues
folk
jazz
blues
rock
blues
classical
%

If you now examine the files in the practice directory, you will find that the files have
been restored to their previous, newer, states. The old versions of the files, which were
stored in ‘music’ with a preceeding directory name, have been written into a newly created
subdirectory under the working directory (which is your ‘practice’ subdirectory). The
new subdirectory is also called ‘practice’.

2.3.2 Extracting Files from an Archive

(This message will disappear, once this node revised.)

Chapter 2: Tutorial Introduction to tar 22

Creating an archive is only half the job—there would be no point in storing files in an
archive if you couldn’t retrieve them. To extract files from an archive, use the ‘--extract’
(‘-x’) operation.

To extract specific files, use their names as file name arguments. If you use a directory
name as a file name argument, tar extracts all the files (including subdirectories) in that
directory. If you don’t use any file name arguments, tar extracts all the files in the archive.

Note: tar will extract an archive member into the file system without checking to see if
there is already a file with the archive member’s file name. If there is a file with that name,
tar will overwrite that file and its contents will be lost.

FIXME: xref keep-old

2.3.3 Extracting Specific Files

(This message will disappear, once this node revised.)

To extract specific files, specify them using file name arguments.

In an example above, you created the archive file ‘~/practice/records’, which con-
tained the files ‘blues’, ‘folk’ and ‘jazz’ in the ‘practice’ directory. If, for some reason,
you were to lose one of those text files (‘rm ~/practice/blues’), you could extract it from
the archive file.

First, change into the ‘practice’ directory. Then,

• Invoke tar and specify the ‘--extract’ (‘-x’) or ‘--get’ operation.

• Specify the archive that the files will be extracted from—‘--file=archive-name ’ (‘-f
archive-name ’).

• Specify the files to extract, using file name arguments (if you don’t specify any files,
tar extracts all the archive members)

% tar --extract --file=records blues

If you list the contents of the directory, you will see that ‘blues’ is back:

% ls
folk
jazz
records
blues

2.3.4 Extracting Directories

(This message will disappear, once this node revised.)

To extract a directory and all the files it contains, use the directory’s name as a file
name argument in conjunction with ‘tar +extract’. Remember–tar stores and extracts
file names relative to the working directory.

In a previous example you stored the directory ‘~/practice’ in the archive file ‘~/music’.
If you delete the contents of ‘practice’, you can restore them using tar.

First, change into the ‘practice’ subdirectory (‘cd ~/practice’). Then, remove all the
files in ‘~/practice’ (‘rm *’). If you list the contents of the directory, you should now see
that it is empty:

Chapter 2: Tutorial Introduction to tar 23

%ls
%

Let’s try to restore the contents of ‘practice’ by extracting them from the archive file
‘~/music’:

tar --extract --file=~/music practice

Now, list the contents of ‘practice’ again:
%ls
practice

What happened to the files? When you created ‘~/music’, your working directory
was your home directory. When you extracted ‘~/music’, your working directory was
‘~/practice’. tar stored the files in ‘practice’ relative to your home directory, and then
extracted them relative to ‘~/practice’. The files are now in a new subdirectory, called
‘~/practice/practice’.

To restore your files to their old positions, delete the new directory and its contents, and
then redo the example above with your home directory as the working directory:

% rm ~/practice/practice/*
% rmdir practice
% cd ..
% tar --extract --file=music practice

(tar will report that it is unable to create the directory ‘~/practice’ because it already
exists. This will not effect the extraction of the other archive members.)

2.4 How to Add Files to Existing Archives

(This message will disappear, once this node revised.)
If you want to add files to an existing archive, then don’t use ‘--create’ (‘-c’). That

will erase the archive and create a new one in its place. Instead, use ‘--append’ (‘-r’). The
command ‘tar --append --file=afiles.tar arbalest’ would add the file ‘arbalest’ to
the existing archive ‘afiles.tar’. The archive must already exist in order to use ‘--append’
(‘-r’).

As with ‘--create’ (‘-c’), the member names of the newly added files will be the exact
same as their names given on the command line. The ‘--verbose’ (‘-v’) option will print
out the names of the files as they are written into the archive.

If you add a file to an archive using ‘--append’ (‘-r’) with the same name as an archive
member already present in the archive, then the old member is not deleted. What does
happen, however, is somewhat complex.
FIXME: xref Multiple Members with the Same Name.

If you want to replace an archive member, use ‘--delete’ first, and then use ‘--append’
(‘-r’).
FIXME: we want people to use the script for backups, so I an not going
FIXME: to use backups as an explanation in the tutorial. (people can still
FIXME: do it if they really want to)

While you can use tar to create a new archive every time you want to store a file, it is
more sometimes efficient to add files to an existing archive.

Chapter 2: Tutorial Introduction to tar 24

To add new files to an existing archive, use the ‘--append’ (‘-r’) operation. To add
newer versions of archive members to an archive, use the ‘--update’ (‘-u’) operation.

While you can use tar to create an archive of an entire directory or directory tree, it is
more efficient when performing backups to only archive those files which have been newly
created or changed since the last backup.

To add new files to an existing archive, or to add newer versions of old files, you can use
the ‘--append’ (‘-r’) operation, or the ‘--update’ (‘-u’) operation.

2.4.1 Appending Files to an Archive

(This message will disappear, once this node revised.)
The simplest method of adding a file to an already existing archive is the ‘--append’

(‘-r’) operation, which writes the files specified into the archive without regard to whether
or not they are already among the archived files. When you use ‘--append’ (‘-r’) you must
specify file name arguments, there is no default. If you specify a file that already exists in
the archive another copy of the file will be added to the end of the archive anyway.

In the previous examples you created a file called ‘rock’ in the practice directory which
did not exist in either the archive file ‘records’, in the practice directory, or the archive
file ‘music’, in the home directory. To add ‘rock’ to ‘records’, you would, while in the
practice directory:
• Invoke tar and specify the operation to add a file—‘--append’ (‘-r’).
• Specify the name of the archive to which the file will be added—‘--file=archive-

name ’ (‘-f archive-name ’).
• Specify the name(s) of the file(s) to be added to the archive as the file name argument(s)

% tar --append --file=records rock

If you now use the ‘--list’ (‘-t’) operation, you will see that ‘rock’ has been added to the
archive:

% tar --list --file=records
blues
folk
jazz
rock

While all newly created files have now been added to ‘records’, it is still not current
with respect to the contents of the practice directory. If you recall from the examples using
‘--compare’ (‘-d’) above, ‘blues’ was changed after the archive ‘records’ was created. It
is simple, however, to use ‘--append’ (‘-r’) to correct the problem:

% tar --append --verbose --file=records blues
blues

Because you specified the ‘--verbose’ (‘-v’) option, tar has printed the name of the file
being appended as it was acted on. If you now use tar with the ‘--list’ (‘-t’) option
specified to get the contents of the archive, you will optain the following:

% tar --list -f records
blues
folk
jazz

Chapter 2: Tutorial Introduction to tar 25

rock
blues

The newest version of ‘blues’ is now at the end of the archive. Because files are extracted
from archives in the order in which they appear in the archive, and because extracted files
are given the same names in the file system as they are stored under in the archive, when
the files in ‘records’ are extracted the newer version of ‘blues’ (which has the same name
as the older) will overwrite the version stored first.

FIXME: xref Keep Old Files

FIXME: –update wont take a directory argument if files that have been
FIXME: archived from that directory are now no longer in it. (I assume
FIXME: because it looks in the archive first for the directory listing.)
FIXME: this is a bug

The simplest method of adding a file to an existing archive is the ‘--append’ (‘-r’) oper-
ation, which writes files into the archive without regard to whether or not they are already
archive members. When you use ‘--append’ (‘-r’) you must use file name arguments; there
is no default. If you specify a file that is already stored in the archive, tar adds another
copy of the file to the archive.

If you have been following the previous examples, you should have a text file
called ‘~/practice/rock’ which has not been stored in either the archive file
‘~/practice/records’, or the archive file ‘~/music’. To add ‘rock’ to ‘records’, first
make ‘practice’ the working directory (‘cd practice’). Then:

• Invoke tar and specify the ‘--append’ (‘-r’) operation.
• Specify the archive to which the file will be added—‘--file=archive-name ’ (‘-f

archive-name ’).
• Specify the files to be added to the archive, using file name arguments

For example:

% tar --append --file=records rock

If you list the archive members in ‘records’, you will see that ‘rock’ has been added to
the archive:

% tar --list --file=records
blues
folk
jazz
rock

FIXME: this should be some kind of node.

You can use ‘--append’ (‘-r’) to keep archive members current with active files. Because
‘--append’ (‘-r’) stores a file whether or not there is already an archive member with the
same file name, you can use ‘--append’ (‘-r’) to add newer versions of archive members
to an archive. When you extract the file, only the version stored last will wind up in the
file system. Because ‘--extract’ (‘-x’) extracts files from an archive in sequence, and
overwrites files with the same name in the file system, if a file name appears more than
once in an archive the last version of the file will overwrite the previous versions which have
just been extracted.

Chapter 2: Tutorial Introduction to tar 26

If you recall from the examples using ‘--compare’ (‘-d’) above, ‘blues’ was changed
after the archive ‘records’ was created. It is simple, however, to use ‘--append’ (‘-r’) to
add the new version of ‘blues’ to ‘records’:

% tar --append --verbose --file=records blues
blues

If you now list the contents of the archive, you will obtain the following:
% tar --list -f records
blues
folk
jazz
rock
blues

The newest version of ‘blues’ is at the end of the archive. When the files in ‘records’
are extracted, the newer version of ‘blues’ (which has the same name as the older) will
overwrite the version stored first. When ‘--extract’ (‘-x’) is finished, only the newer
version of ‘blues’ is in the file system.
FIXME: xref keep-old-files

2.4.2 Updating Files in an Archive

(This message will disappear, once this node revised.)
While the ‘--append’ (‘-r’) option is useful for updating files in an archive, to keep an

archive current with ‘--append’ (‘-r’) you must first use the ‘--compare’ (‘-d’) or ‘--list’
(‘-t’) options to determine what files have been changed (or be willing to waste space by
adding identical copies of archived files to the ends of archives). It is simpler to use the
‘--update’ (‘-u’) operation, and let tar do the work for you.

The ‘--update’ (‘-u’) option causes tar to add files to the end of an archive, just like the
‘--append’ (‘-r’) option. When you invoke tar with the ‘--update’ (‘-u’) option specified
you must specify file name arguments. Unlike ‘--append’ (‘-r’), the ‘--update’ (‘-u’)
option causes tar to check the archive to be updated to see if the specified file is already
stored. If the file (or one with the same name) is already in the archive, tar checks the
modification date of the file in the archive and compares it to the file of the same name in
the file system. The file is only appended to the archive if it is new or if its modification
date has changed to a later one.
FIXME: xref After-Date

To see the ‘--update’ (‘-u’) option at work, create a new file, ‘classical’, in your
practice directory, and add a line to the file ‘blues’, using any text editor. Then invoke
tar with the ‘--update’ (‘-u’) operation and the ‘--verbose’ (‘-v’) option specified, using
the names of all the files in the practice directory as file name arguments:

% tar --update --verbose --file=records blues folk rock classical
blues
classical
%

Because we have specified verbose mode, tar prints out the names of the files it is working
on, which in this case are the names of the files that needed to be updated. If you now

Chapter 2: Tutorial Introduction to tar 27

invoke tar with the ‘--list’ (‘-t’) operation specified, to generate a listing of the files in
the archive, you will see that ‘blues’ and ‘classical’ have been added to its end.

[The reason tar does not overwrite the older file when updating it is because writing to
the middle of a section of tape is a difficult process. Tapes are not designed to go backward.
Even if they were, imagine what would happen if the newer version were longer than the
older one.]

To keep archive members up to date with their counterparts of the same name in the file
system, use the ‘--update’ (‘-u’) option. This adds a specified file to an archive if no file
of that name is already stored in the archive. If there is already an archive member with
the same name, tar checks the modification date of the archive member, and adds the file
only if its modification date is later. If a file is stored in the archive but no longer exists
under the same name in the active file system, tar reports an error.

You could use the ‘--append’ (‘-r’) option to keep an archive current, but do so you
would either have to use the ‘--compare’ (‘-d’) and ‘--list’ (‘-t’) options to determine
what files needed to be re-archived (which could waste a lot of time), or you would have to
be willing to add identical copies of already archived files to the archive (which could waste
a lot of space).

You must use file name arguments with the ‘--update’ (‘-u’) operation–if you don’t
specify any files, tar won’t act on any files.

To see the ‘--update’ (‘-u’) option at work, create a new file, ‘~/practice/classical’,
and modify the file ‘~/practice/blues’ (you can use a text editor, such as Emacs, to do
both these things). Then, with ‘practice’ as your working directory, invoke tar with the
‘--update’ (‘-u’) option, using the names of all the files in the practice directory as file
name arguments, and specifying the ‘--verbose’ (‘-v’) option:

% tar --update --verbose --file=records blues folk rock classical
blues
classical
%

Because you specified verbose mode, tar printed out the names of the files it acted on.
If you now list the archive members of the archive, (‘tar --list --file=records’), you
will see that the file ‘classical’ and another version of the file ‘blues’ have been added to
‘records’.

Note: When you update an archive, tar does not overwrite old archive members when
it stores newer versions of a file. This is because archive members appear in an archive in
the order in which they are stored, and some archive devices do not allow writing in the
middle of an archive.

2.4.3 Concatenating Archives

(This message will disappear, once this node revised.)

Rather than adding individual files onto the end of an archive, it may be more convenient
to add archives themselves onto the end of an archive. While it may seem intuitive to use
cat, the utility for adding files together, for this purpose, archives created by tar incorporate
an end of file marker which must be removed if the concatenated archives are to be read
properly as one archive

Chapter 2: Tutorial Introduction to tar 28

FIXME: xref Ignore zeros.
To add archives to the end of another archive, therefore, you should use the

‘--concatenate’ (‘-A’) operation.
In earlier examples you created an archive file, ‘music’, in your home directory. You

have, however, since changed the contents of the ‘practice’ directory which was stored
in that archive. ‘records’, the archive file in the ‘practice’ directory, has recently been
updated, and contains a current version of the files in ‘practice’. Rather than update the
contents of ‘music’, let’s add ‘records’ to it.
• Change into the home directory (‘cd ..’)
• Invoke tar, and specify the operation to add archives to the end of another archive—

‘--concatenate’ (‘-A’).
• Specify the name of the archive file to be added to—‘--file=archive-name ’ (‘-f

archive-name ’).
• Specify the file name arguments, which are, unusually, the names of archive files. Re-

member to include the directory name in the file name, if the archive file is not in your
working directory.
% cd ..
% tar --concatenate --file=music practice/records

Rather than list the new contents of ‘music’, let’s extract all the files and see what
happens.

To concatenate archive files, use the ‘--concatenate’ (‘-A’) option. This operation
adds other archives to the end of an archive. While it may seem intuitive to concatenate
archives using cat, the utility for adding files together, archive files which have been “catted”
together cannot be read properly by tar. Archive files incorporate an end of file marker–if
archives are concatenated using cat, this marker will appear before the end of the new
archive. This will interfere with operations on that archive.
FIXME: xref ignore-zeros

In earlier examples, you stored the ‘~/practice’ directory in an archive file, ‘~/music’.
If you have been following the examples, you have since changed the contents of the
‘~/practice’ directory. There is a current version of the files in the ‘practice’ directory,
however, stored in the archive file ‘~/practice/records’.

To store current versions of the files in ‘practice’ in the archive file ‘music’, you can
use ‘--concatenate’ (‘-A’) to add the archive file ‘~/practice/records’ to ‘music’. First,
make sure you are in your home directory (‘cd ~’). Then:
• Invoke tar, and specify the ‘--concatenate’ (‘-A’) operation.
• Specify the archive file to be added to—‘--file=archive-name ’ (‘-f archive-name ’).
• Specify the archives to be added, using file name arguments. In this case, the file name

arguments are, unusually, the names of archive files. (Remember to include the path
in the archive name, if the archive file is not in your working directory.)
% cd ~
% tar --concatenate --file=music practice/records

If you now list the contents of the ‘music’, you see it now contains the archive members
of ‘practice/records’:

Chapter 2: Tutorial Introduction to tar 29

%tar --list --file=music
blues
folk
jazz
rock
blues
practice/blues
practice/folk
practice/jazz
practice/rock
practice/blues
practice/classical

2.5 How to Delete Members from Archives

(This message will disappear, once this node revised.)
You can delete members from an archive using ‘--delete’. Specify the name of the

archive with ‘--file=archive-name ’ (‘-f archive-name ’). List the member names of the
members to be deleted. (If you list no member names, then nothing will be deleted.) The
‘--verbose’ (‘-v’) option will cause tar to print the names of the members as they are
deleted. As with ‘--extract’ (‘-x’), it is important that you give the exact member names
when using ‘tar --delete’. Use ‘--list’ (‘-t’) to find out the exact member names in an
archive.
FIXME: xref Listing Archives.

The ‘--delete’ option only works with archives stored on disk. You cannot delete
members from an archive stored on a tape.

In some instances, it may be advantageous to remove some files from an archive stored
on disk (it is never advantageous to delete files from an archive stored on tape—the linear
nature of tape storage makes this action likely to scramble the archive). You can use the
‘--delete’ operation to remove files from an archive. The names of files to be removed
must be specified to tar as file name arguments. All versions of the named file are removed
from the archive. Execution of the ‘--delete’ operation can be very slow.

To delete all versions of the file ‘blues’ from the archive ‘records’ in the ‘practice’
directory, make sure you are in that directory, and then,
• List the contents of the archive file ‘records’ (see above for the steps involved) to insure

that the file(s) you wish to delete are stored in the archive. (This step is optional)
• Invoke tar and specify the operation to delete files from an archive (‘--delete’)
• Specify the name of the archive file that the file(s) will be deleted—‘--file=archive-

name ’ (‘-f archive-name ’).
• Specify the name(s) of the file(s) to be deleted, as file name arguments
• List the contents of the archive file again—note that the files have been removed. (this

step is also optional)
% tar --list --file=records
blues
folk

Chapter 2: Tutorial Introduction to tar 30

jazz
% tar --delete --file=records blues
% tar --list --file=records
folk
jazz
%

In some instances, you may want to remove some files from an archive stored on disk
Caution: you should never delete files from an archive stored on tape–because
of the linear nature of tape storage, doing this is likely to scramble the archive.

To remove archive members from an archive, use the ‘--delete’ operation. You must
specify the names of files to be removed as file name arguments. All versions of the named
file are removed from the archive.

Execution of the ‘--delete’ operation can be very slow.
To delete all versions of the file ‘blues’ from the archive ‘records’ in the ‘practice’

directory, make sure you are in that directory, and then:
• List the contents of the archive file ‘records’ (see above for the steps involved) to insure

that the file(s) you wish to delete are stored in the archive. (This step is optional)
• Invoke tar and specify the ‘--delete’ operation (‘--delete’).
• Specify the name of the archive file that the file(s) will be deleted from—

‘--file=archive-name ’ (‘-f archive-name ’).
• Specify the files to be deleted, using file name arguments.
• List the contents of the archive file again—note that the files have been removed. (this

step is also optional)
% tar --list --file=records
blues
folk
jazz
% tar --delete --file=records blues
% tar --list --file=records
folk
jazz
%

Chapter 3: Invoking GNU tar 31

3 Invoking GNU tar

(This message will disappear, once this node revised.)

3.1 General Synopsis of tar

The usual way to invoke tar is:
tar option... [name]...

You can actually type in arguments in any order, but in this manual the options always
precede the other arguments, to make examples easier to understand. Further, the option
stating the main operation mode (the tar main command) is usually given first.

There are surely many options to tar, and three different style for writing them:
mnemonic options, short options, and old options. These styles are discussed below.
Some options make sense with any main command, while others are meaningful only with
particular main commands. One option should state the main command, all others are
truly optional.

Beware that tar options are case sensitive. For example, [No value for “List”] or [No
value for “List”] options are not equivalent to ‘--list’ (‘-t’), in fact, they do not even
exist. Options ‘-T’ and ‘-t’ are different options, the first requires an argument for stating
the name of a file providing a list of names, the second does not require an argument and
is another way to write ‘--list’ (‘-t’).

Each name in the synopsis above is interpreted as an archive member name when the
main command is one of ‘--compare’ (‘-d’), ‘--delete’, ‘--extract’ (‘-x’), ‘--list’ (‘-t’)
or ‘--update’ (‘-u’). For all other main commands, names are interpreted as the names
of files (including directories) in the file system. tar interprets relative file names as being
relative to the working directory.

tar will make all file names relative (by removing leading ‘/’s when archiving or restoring
files), unless you specify otherwise (using the ‘--absolute-names’ (‘-P’) option).
FIXME: xref File Name
Interpretation

, for more information about ‘--absolute-names’ (‘-P’).
FIXME: yet another node name that is probably wrong.

The distinction between file names and archive member names is especially important
when shell globbing is used, and sometimes a source of confusion for newcomers. Globbing
is the operation by which wildcard characters, ‘*’ or ‘?’ for example, are replaced and
expanded into all existing files matching the given pattern. The problem is that shells may
only glob using existing files in the file system. Only tar may glob on archive members, so
when needed, you must ensure that wildcard characters reach tar without being interpreted
by the shell first. Using a backslash before ‘*’ or ‘?’, or putting the whole argument between
quotes, is usually sufficient for this.

Even if names are often specified on the command line, they can also be read from a
text file in the file system, using the ‘--files-from=file-of-names ’ (‘-T file-of-names ’)
option.

Each of the following subsection groups some options under a common functionality.

Chapter 3: Invoking GNU tar 32

You can use tar to store files in an archive, to extract them from an archive, and to
do other types of archive manipulation. The primary argument to tar, which is called the
operation, specifies which action to take. The other arguments to tar are either options,
which change the way tar performs an operation, or file names, which specify the files tar
is to act on. The typical tar command line syntax is:

GNU tar returns only a few exit statuses. I’m really aiming simplicity in that area,
for now. If you are not using the ‘--compare’ (‘-d’) option, zero means that everything
went well, besides maybe innocuous warnings. Nonzero means that something went wrong.
Right now, as of today, “nonzero” is almost always 2, except for remote operations, where
it may be 128.

3.2 Many Styles for Options

3.2.1 Mnemonic Option Style

Each option has at least one mnemonic option name starting with two dashes in a row,
v.g. ‘--list’ (‘-t’). The mnemonic option names are more legible than the corresponding
short or old option names, you may prefer them if you highly praise clarity. It sometimes
happens that a single mnemonic option has many different different names, which are then
synonymous. In addition, mnemonic option names can be given unique abbreviations. For
example, ‘--cre’ can be used in place of ‘--create’ because there is no other mnemonic
option which begins with ‘cre’.

Some options require an argument. This is the case of the ‘--file=archive-name ’
(‘-f archive-name ’) option, which tells the name of the tar archive. The argument of
a mnemonic option is usually given right after the option itself, and introduced by an
equal sign. For example, the ‘--file=archive-name ’ (‘-f archive-name ’) option is given
the ‘archive.tar’ file as argument by using the notation ‘--file=archive.tar’ for the
mnemonic option.

Mnemonic options are meant to be obvious and easy to remember, possibly more so than
their corresponding short options, below. For example:

tar --create --verbose --block-size=20 --file=/dev/rmt0

gives a fairly good set of hints about what the command does, even for those not fully
acquainted with tar.

3.2.2 Short Option Style

Most options, but not all of them, also have a short option name starting with a single
dash, and followed by a single character, v.g. ‘-t’. In fact, ‘-t’ is exactly the short option
name for the mnemonic option ‘--list’ (‘-t’), both having exactly the same meaning. The
forms are absolutely identical in function.

The short option names are faster to type than mnemonic option names. All along
this manual, whenever a mnemonic option name is given, its equivalent short option name
follows between parentheses, if such a short option name exists.

Short options which require arguments use the immediately following argument, so it
may be thought as being merely introduced right after it, usually separate by white space.
It is also possible to stick the argument right after the short option name, using no inter-
vening space. So one might write ‘-f archive.tar’ or ‘-farchive.tar’ instead of using

Chapter 3: Invoking GNU tar 33

‘--file=archive.tar’. Both ‘--file=archive-name ’ and ‘-f archive-name ’ denote the
option to give the archive a non-default name, which in the example is ‘archive.tar’.
When the option is given separately, its argument follows it, as is usual for Unix programs.
For example:

tar -c -v -b 20 -f /dev/rmt0

Short options letters may be lumped together, but contrary to old options, they do not
necessarily have to. When short options are nevertheless coalesced, use a single dash for
them all. Only the last one in such a set is allowed to have an argument. (Clustering many
options, the last of which taking an argument, seems to be fairly opaque writing to me. I
would even like that GNU getopt be helpful enough to make this illegal.)

If you move short options in the command, be sure to move their arguments along with
them, if any.

3.2.3 Old Option Style

(This message will disappear, once this node revised.)
Old options are single letters not preceeded by any dash at all, and appearing only in the

position immediately following the ‘tar’ keyword in the command, after some white space.
The letter of an old option is exactly the same letter as the corresponding short option. For
example, the old option ‘t’ is the same as the short option ‘-t’, and consequently, the same
as long option ‘--list’ (‘-t’).

As far as we know, all tar programs, GNU and non-GNU, support old options. GNU
tar supports them not only for historical reasons, but also because many people are used
to them.

All old options should be written as a single argument, without separating spaces, by
lumping together all letters specifying these options. This set of letters should be the first
to appear on the command line, after the tar program name; old options cannot appear
anywhere else. Then, for any old option required an argument, the argument should follow
on the command line. Arguments to the options should appear in the same order as the
letters to which they correspond. The tar command synopsis might be rewritten:

tar letter... [argument]... [option]... [name]...

when old options are being used.
This command syntax is useful because it lets you type the single letter forms of the op-

eration and options as a single argument to tar, without writing preceding ‘-’s or inserting
spaces between letters. ‘tar cv’ or ‘tar -cv’ are equivalent to ‘tar -c -v’.

For compatibility with Unix tar, the first argument can contain an option letter (or
a cluster of option letters) not introduced by a dash; for example, ‘tar cv’ specifies the
option ‘-v’ in addition to the command ‘-c’. When options that need arguments are given
together with the command, all the associated arguments follow, in the same order as the
options. Thus, the example above could also be written in the old style as follows:

tar cvbf 20 /dev/rmt0

Here ‘20’ is the argument of ‘-b’ and ‘/dev/rmt0’ is the argument of ‘-f’.
On the other hand, this old style syntax makes it difficult to match option letters with

their corresponding arguments, and is often confusing. In the command ‘tar cvbf 20
/dev/rmt0’, for example, ‘20’ is the argument for ‘-b’, ‘/dev/rmt0’ is the argument for

Chapter 3: Invoking GNU tar 34

‘-f’, and ‘-v’ does not have a corresponding argument. Even using short options like in
‘tar -c -v -b 20 -f /dev/rmt0’ is clearer, putting all arguments next to the option they
pertain to.

If you want to reorder the letters in the old option argument, be sure to appropriately
reorder any corresponding argument.

This old way of writing tar options can surprise even experienced users. For example,
the two commands:

tar cfz archive.tar.gz file
tar -cfz archive.tar.gz file

are quite different. The first example uses ‘archive.tar.gz’ as the value for option ‘f’ and
recognizes the option ‘z’. The second example, however, uses ‘z’ as the value for option
‘f’—probably not what was intended. (I find it quite inelegant that getopt batches the
remaining ‘z’ as the value for ‘f’. I think that clarity dictates that clustering of option letters,
when some require arguments, should be diagnosed and disallowed. But compatibility with
traditional systems dictates it.) This second example could be corrected in many ways,
among which:

tar -czf archive.tar.gz file
tar -cf archive.tar.gz -z file
tar cf archive.tar.gz -z file

3.2.4 Mixing Option Styles

All three styles may be intermixed in a single tar command, as long as the rules for each
style are fully respected.

In GNU tar up to 1.11.6, using old style options was cutting out the possibility of using
many options not having short forms. Many users rightly expressed their frustration at
fighting with the current tar option decoder, so I changed it. However, GNU tar needs to
be compatible with other tars, in the things that other tars can do. Short options should
provide upward compatibility. So, if the current option decoding raises incompatibilities,
please let me know.

Old style options and modern options may be mixed on a single call to the tar program.
However, old style options should be introduced in the first argument only; modern options
may be given only after all arguments to old style options have been collected. If this rule
is not respected, a modern option might be falsely interpreted as the value of the argument
to one of the old style options.

For example, currently, all the following commands are wholly equivalent, and illustrate
many combinations and orderings of option styles.

tar --create --file=archive.tar
tar --create -f archive.tar
tar --create -farchive.tar
tar --file=archive.tar --create
tar --file=archive.tar -c
tar -c --file=archive.tar
tar -c -f archive.tar
tar -c -farchive.tar
tar -cf archive.tar

Chapter 3: Invoking GNU tar 35

tar -cfarchive.tar
tar -f archive.tar --create
tar -f archive.tar -c
tar -farchive.tar --create
tar -farchive.tar -c
tar c --file=archive.tar
tar c -f archive.tar
tar c -farchive.tar
tar cf archive.tar
tar f archive.tar --create
tar f archive.tar -c
tar fc archive.tar

On the other hand, the following commands are not equivalent to the previous set:
tar -f -c archive.tar
tar -fc archive.tar
tar -fcarchive.tar
tar -farchive.tarc
tar cfarchive.tar

These last examples mean something completely different of what the user might have
intended. The first four specify that the tar archive would be a file named ‘-c’, ‘c’,
‘carchive.tar’ or ‘archive.tarc’, respectively. The first two examples also specify a
single non-option, name argument having value ‘archive.tar’. The last example contains
only old style option letters (repeating option ‘c’ twice) and no argument value.

3.3 All Available Options

(This message will disappear, once this node revised.)
Options change the way tar performs an operation.

‘--absolute-names’
‘--after-date=date ’

Limit the operation to files changed after the given date.
FIXME: xref File Exclusion
.

‘--block-size=number ’
Specify the blocking factor of an archive.
FIXME: xref Blocking Factor
.

‘--compress’
Specify a compressed archive.
FIXME: xref Compressed Archives
.

‘--compress-block.’
Create a whole block sized compressed archive.

Chapter 3: Invoking GNU tar 36

FIXME: xref Compressed Archives
.

‘--confirmation’
Solicit confirmation for each file.
FIXME: xref Interactive Operation
FIXME: –selective should be a synonym.

‘--dereference’
Treat a symbolic link as an alternate name for the file the link points to.
FIXME: xref Symbolic Links
.

‘--directory=‘directory’’
Change the working directory.
FIXME: xref Changing Working Directory
.

‘--exclude=pattern ’
Exclude files which match the regular expression pattern.
FIXME: xref File Exclusion
.

‘--exclude-from=‘file’’
Exclude files which match any of the regular expressions listed in the file ‘file’.
FIXME: xref File Exclusion
.

‘--file=archive-name ’
Name the archive.
FIXME: xref Archive Name
).

‘--files-from=‘file’’
Read file name arguments from a file on the file system.
FIXME: xref File Name Lists
.

‘--ignore-umask’
Set modes of extracted files to those recorded in the archive.
FIXME: xref File Writing Options
.

‘--ignore-zeros’
Ignore end-of-archive entries.
FIXME: xref Archive Reading Options
.
FIXME: this should be changed to –ignore-end

Chapter 3: Invoking GNU tar 37

‘--tape-length=n (-L)’
FIXME: alternate way of doing multi archive, will go to that length and
FIXME: prompts for new tape, automatically turns on multi-volume. this
FIXME: needs to be written into main body as well

‘--info-script=program-file ’
Create a multi-volume archive via a script.
FIXME: xref Multi-Volume Archives
.

‘--interactive’
Ask for confirmation before performing any operation on a file or archive mem-
ber.

‘--keep-old-files’
Prevent overwriting during extraction.
FIXME: xref File Writing Options
.

‘--label=archive-label ’
Include an archive-label in the archive being created.
FIXME: xref Archive
Label
.

‘--modification-time’
Set the modification time of extracted files to the time they were extracted.
FIXME: xref File Writing Options
.

‘--multi-volume’
Specify a multi-volume archive.
FIXME: xref Multi-Volume Archives
.

‘--newer=date ’
Limit the operation to files changed after the given date.
FIXME: xref File Exclusion
.

‘--newer-mtime=date ’
Limit the operation to files modified after the given date.
FIXME: xref File
Exclusion
.

‘--old’ Create an old format archive.
FIXME: xref Old Style File Information
.

Chapter 3: Invoking GNU tar 38

FIXME: did we agree this should go away as a synonym?

‘--old-archive’
Create an old format archive.
FIXME: xref Old Style File Information
.

‘--one-file-system’
Prevent tar from crossing file system boundaries when archiving.
FIXME: xref File Exclusion
.

‘--portability’
Create an old format archive.
FIXME: xref Old Style File Information
.
FIXME: was portability, may still need to be changed

‘--preserve-order’
Help process large lists of file names on machines with small amounts of memory.
FIXME: xref Archive Reading Options
.

‘--preserve-permission’
Set modes of extracted files to those recorded in the archive.
FIXME: xref File Writing Options
.

‘--read-full-blocks’
Read an archive with a smaller than specified block size or which contains
incomplete blocks.
FIXME: xref Archive Reading Options
).
FIXME: should be –partial-blocks (!)

‘--record-number’
Print the record number where a message is generated.
FIXME: xref Additional Information
.

‘--same-order’
Help process large lists of file names on machines with small amounts of memory.
FIXME: xref Archive Reading Options
.

‘--same-permission’
Set the modes of extracted files to those recorded in the archive.

Chapter 3: Invoking GNU tar 39

FIXME: xref File Writing Options
.

‘--sparse’
Archive sparse files sparsely.
FIXME: xref Sparse Files
.

‘--starting-file=file name ’
Begin reading in the middle of an archive.
FIXME: xref Scarce Disk Space
.

‘--to-stdout’
Write files to the standard output.
FIXME: xref File Writing Options
.

‘--uncompress’
Specifdo a compressed archive.
FIXME: xref Compressed Archives
.

‘-V archive-label ’
Include an archive-label in the archive being created.
FIXME: xref Archive
Label
.
FIXME: was –volume

‘--verbose’
Print the names of files or archive members as they are being operated on.
FIXME: xref Additional Information
.

‘--verify’
Check for discrepancies in the archive immediately after it is written.
FIXME: xref Write Verification
.

‘-B’ Read an archive with a smaller than specified block size or which contains
incomplete blocks.
FIXME: xref Archive Reading Options
).

‘-K file name ’
Begin reading in the middle of an archive.

Chapter 3: Invoking GNU tar 40

FIXME: xref Scarce Disk Space
.

‘-M’ Specify a multi-volume archive.
FIXME: xref Multi-Volume Archives
.

‘-N date ’ Limit operation to files changed after the given date.
FIXME: xref File Exclusion
.

‘-O’ Write files to the standard output.
FIXME: xref File Writing Options
.
FIXME: - P is absolute names, add when resolved.

‘-R’ Print the record number where a message is generated.
FIXME: xref Additional Information
.

‘-S’ Archive sparse files sparsely.
FIXME: xref Sparse Files
.

‘-T file ’ Read file name arguments from a file on the file system.
FIXME: xref File Name Lists
.

‘-W’ Check for discrepancies in the archive immediately after it is written.
FIXME: xref Write Verification
.

‘-Z’ Specify a compressed archive.
FIXME: xref Compressed Archives
.

‘-b number ’
Specify the blocking factor of an archive.
FIXME: xref Blocking Factor
.

‘-f archive-name ’
Name the archive.
FIXME: xref Archive Name
).

‘-h’ Treat a symbolic link as an alternate name for the file the link points to.

Chapter 3: Invoking GNU tar 41

FIXME: xref Symbolic Links
.

‘-i’ Ignore end-of-archive entries.
FIXME: xref Archive Reading Options
.

‘-k’ Prevent overwriting during extraction.
FIXME: xref File Writing Options
.

‘-l’ Prevent tar from crossing file system boundaries when archiving.
FIXME: xref File Exclusion
.

‘-m’ Set the modification time of extracted files to the time they were extracted.
FIXME: xref File Writing Options
.

‘-o’ Create an old format archive.
FIXME: xref Old Style File Information
.

‘-p’ Set the modes of extracted files to those recorded in the archive.
FIXME: xref File Writing Options
.

‘-s’ Help process large lists of file names on machines with small amounts of memory.
FIXME: xref Archive Reading Options
.

‘-v’ Print the names of files or archive members they are being operated on.
FIXME: xref Additional Information
.

‘-w’
FIXME: see –interactive.

‘-z’ Specify a compressed archive.
FIXME: xref Compressed Archives
.

‘-z -z’ Create a whole block sized compressed archive.
FIXME: xref Compressed Archives
.
FIXME: I would rather this were -Z. it is the only double letter short
FIXME: form.

Chapter 3: Invoking GNU tar 42

‘-C ‘directory’’
Change the working directory.
FIXME: xref Changing Working Directory
.

‘-F program-file ’
Create a multi-volume archive via a script.
FIXME: xref Multi-Volume Archives
.

‘-X ‘file’’
Exclude files which match any of the regular expressions listed in the file ‘file’.
FIXME: xref File Exclusion
.

3.3.1 Device selection and switching

(This message will disappear, once this node revised.)

-f [hostname:]file
--file=[hostname:]file

Use archive file or device file on hostname.
FIXME: xref Device
.

--force-local
Archive file is local even if it contains a colon.
FIXME: xref Device
.

--rsh-command=command
Use remote command instead of rsh.
FIXME: xref Device
.

-[0-7][lmh]
Specify drive and density.
FIXME: xref Device
.

-M
--multi-volume

Create/list/extract multi-volume archive.
FIXME: xref Multi
.

-L num

--tape-length=num
Change tape after writing num x 1024 bytes.

Chapter 3: Invoking GNU tar 43

FIXME: xref Multi
.

-F file

--info-script=file
--new-volume-script=file

Execute ‘file’ at end of each tape. This implies ‘--multi-volume’ (‘-M’)).
FIXME: xref Multi
.

3.3.2 Device blocking

(This message will disappear, once this node revised.)

-b blocks

--block-size=blocks
Set block size to blocks ∗ 512 bytes.
FIXME: xref Blocking
.

--block-compress
Block the output of compression for tapes.
FIXME: xref Blocking
.

-i
--ignore-zeros

Ignore blocks of zeros in archive (means EOF).
FIXME: xref Blocking
.

-B
--read-full-blocks

Reblock as we read (for reading 4.2BSD pipes).
FIXME: xref Blocking
.

3.3.3 Old classification of options

(This message will disappear, once this node revised.)
The information here is to be revised and merged into the remainder of this document,

possibly altering its structure.
Options could be regrouped in three categories:

General Options
Options that are always meaningful.

Creation Options
Options for creating or updating an archive.

Chapter 3: Invoking GNU tar 44

Extraction Options
Options for listing or extracting files.

Here are the options that are always meaningful.

‘-B number ’, ‘--block-size number ’
‘-f filename ’, ‘--file filename ’
‘-C dir ’, ‘--directory dir ’
‘-M’, ‘--multi-volume’
‘-N date ’, ‘--after-date date ’
‘-R’, ‘--record-number’ (‘-R’)
‘-T filename ’, ‘--files-from filename ’
‘-v’, ‘--verbose’ (‘-v’)
‘-w’, ‘--interactive’
‘-X file ’, ‘--exclude file ’
‘-z’, ‘-Z’, ‘--compress’, ‘--uncompress’

Here are the options for creating or updating an archive. These options are used to
control which files tar puts in an archive, or to control the format the archive is written in

FIXME: ref Format

. Except as noted elsewhere, these options are useful with the ‘--create’ (‘-c’),
‘--append’ (‘-r’), ‘--update’ (‘-u’), ‘--concatenate’ (‘-A’), and ‘--delete’ commands.
Also note that the [No value for “read-full-block”] option

FIXME: (pxref Extraction Options),

is also useful with the ‘--append’ (‘-r’), ‘--update’ (‘-u’), ‘--concatenate’ (‘-A’), and
‘--delete’ commands.

‘-G’, ‘--incremental’
‘-h’, ‘--dereference’ (‘-h’)
‘-l’, ‘--one-file-system’
‘-o’, ‘--old-archive’ (‘-o’)
‘--old’, ‘--portability’
‘-S’, ‘--sparse’
‘-V NAME’, ‘--volume NAME’
‘-W’, ‘--verify’

Here are the options for listing or extracting files. The options in this section are mean-
ingful with the ‘--extract’ (‘-x’) command. Unless otherwise stated, they are also mean-
ingful with the ‘--list’ (‘-t’) command.

Chapter 3: Invoking GNU tar 45

‘-B’, ‘--read-full-blocks’
‘-G’, ‘--incremental’
‘-i’, ‘--ignore-zeros’
‘-k’, ‘--keep-old-files’
‘-K filename ’, ‘--starting-file filename ’
‘-m’, ‘--modification-time’
‘-O’, ‘--to-stdout’
‘-p’, ‘--same-permissions’, ‘--preserve-permissions’
‘-P’, ‘--absolute-names’ (‘-P’)
‘-s’, ‘--same-order’, ‘--preserve-order’
‘--preserve’

Chapter 4: Basic tar Operations 46

4 Basic tar Operations

(This message will disappear, once this node revised.)
This chapter describes the basic operations supported by the tar program. A given

invocation of tar will do exactly one of these operations.
An archive member in normally extracted into a file with the same name as the archive

member. However, you can use the ‘--to-stdout’ (‘-O’) to cause tar to write extracted
archive members to standard output. If you extract multiple members, they appear on
standard output concatenated, in the order they are found in the archive.

The ‘--create’ (‘-c’) operation writes a new archive, and the ‘--extract’ (‘-x’) oper-
ation reads files from an archive and writes them into the file system. You can use other
tar operations to write new information into an existing archive (adding files to it, adding
another archive to it, or deleting files from it), and you can read a list of the files in an
archive without extracting it using the ‘--list’ (‘-t’) operation.

The primary argument to tar is the operation, which specifies what tar does. tar can
be used to:
• Add files to an existing archive—‘--append’ (‘-r’).
• Compare files in an archive with files in the file system—‘--compare’ (‘-d’) or ‘--diff’.
• Add archives to another archive—‘--concatenate’ (‘-A’).
• Create an archive—‘--create’ (‘-c’).
• Delete files from an archive—‘--delete’.
• Extract files from an archive—‘--extract’ (‘-x’) or ‘--get’.
• List the files in an archive—‘--list’ (‘-t’).
• Update an archive by appending newer versions of already stored files—‘--update’

(‘-u’).
FIXME: xref Reading and Writing

, for more information about these operations.
Option arguments to tar change details of the operation, such as archive format, archive

name, or level of user interaction. You can specify more than one option. All options are
optional.

File Name arguments specify which files (including directory files) to archive, extract,
delete or otherwise operate on.

If you don’t use any file name arguments, ‘--append’ (‘-r’), ‘--update’ (‘-u’) and
‘--delete’ will do nothing. The other operations of tar will act on defaults.

When you use a file name argument to specify a directory file, tar acts on all the files
in that directory, including sub-directories.

You must give exactly one option from the following list to tar. This option specifies
the basic operation for tar to perform.

‘--create’
‘-c’ Create a new archive

‘--catenate’
‘--concatenate’
‘-A’ Add the contents of one or more archives to another archive

Chapter 4: Basic tar Operations 47

‘--append’
‘-a’ Add files to an existing archive

‘--list’

‘-t’ List the members in an archive

‘--delete’
Delete members from an archive

‘--extract’
‘--get’

‘-x’ Extract members from an archive

‘--compare’
‘--diff’

‘-d’ Compare members in an archive with files in the file system

‘--update’
‘-u’ Update an archive by appending newer versions of already stored files

The remaining options to tar change details of the operation, such as archive format,
archive name, or level of user interaction. You can specify more than one option.

The remaining arguments are interpreted either as file names or as member names,
depending on the basic operation tar is performing. For ‘--append’ (‘-r’) and ‘--create’
(‘-c’) these arguments specify the names of files (which must already exist) to place in
the archive. For the remaining operation types, the additional arguments specify archive
members to compare, delete, extract, list, or update. When naming archive members, you
must give the exact name of the member in the archive, as it is printed by ‘--list’ (‘-t’).
When naming files, the normal file name rules apply.

If you don’t use any additional arguments, ‘--append’ (‘-r’), ‘--concatenate’ (‘-A’),
and ‘--delete’ will do nothing. Naturally, ‘--create’ (‘-c’) will make an empty archive
if given no files to add. The other operations of tar (‘--list’ (‘-t’), ‘--extract’ (‘-x’),
‘--compare’ (‘-d’), and ‘--update’ (‘-u’)) will act on the entire contents of the archive.

If you give the name of a directory as either a file name or a member name, then tar
acts recursively on all the files and directories beneath that directory. For example, the
name ‘/’ identifies all the files in the filesystem to tar.

The operation argument to tar specifies which action you want to take.

‘-A’ Adds copies of an archive or archives to the end of another archive.

‘-c’ Creates a new archive.

‘-d’ Compares files in the archive with their counterparts in the file system, and
reports differences in file size, mode, owner, modification date and contents.

‘-r’ Adds files to the end of the archive.

‘-t’ Prints a list of the contents of the archive.

‘-x’ Reads files from the archive and writes them into the active file system.

Chapter 4: Basic tar Operations 48

‘-u’ Adds files to the end of the archive, but only if they are newer than their
counterparts already in the archive, or if they do not already exist in the archive.

‘--catenate’
Adds copies of an archive or archives to the end of another archive.

‘--append’
Adds files to the end of the archive.

‘--append’
Adds files to the end of the archive.

‘--catenate’
Adds copies of an archive or archives to the end of another archive.

‘--compare’
Compares files in the archive with their counterparts in the file system, and
reports differences in file size, mode, owner, modification date and contents.

‘--concatenate’
Adds copies of an archive or archives to the end of another archive.

‘--create’
Creates a new archive.

‘--delete’
Deletes files from the archive. All versions of the files are deleted.

‘--diff’ Compares files in the archive with their counterparts in the file system, and
reports differences in file size, mode, owner, modification date and contents.

‘--extract’
Reads files from the archive and writes them into the active file system.

‘--get’ Reads files from the archive and writes them into the active file system.

‘--list’ Prints a list of the contents of the archive.

‘--update’
Adds files to the end of the archive, but only if they are newer than their
counterparts already in the archive, or if they do not already exist in the archive.

‘--version’
Prints the version number of the tar program to the standard error.

The program tar can create an archive, extract files from an archive, modify an archive,
or list an archive’s contents. Each time you run tar, you must give a command to specify
which one of these things you want to do.

The command must always be in the first argument to tar. This argument can also
contain options (
FIXME: pxref Invoking tar

). For compatibility with Unix tar, the first argument is always treated as containing
command and option letters even if it doesn’t start with ‘-’. Thus, ‘tar c’ is equivalent to
‘tar -c’: both of them specify the ‘--create’ (‘-c’) command to create an archive.

Chapter 4: Basic tar Operations 49

In addition, a set of long-named options are provided which can be used instead of or
intermixed with the single-letter flags. The long-named options are meant to be easy to
remember and logical, while the single letter flags may not always be. Long-named options
begin with ‘--’.

Arguments after the first are either options, if they start with ‘-’ or ‘--’, or files to
operate on.

The file names that you give as arguments are the files that tar will act on—for example,
they are the files to put in the archive, or the files to extract from it. If you don’t give any
file name arguments, the default depends on which command you used. Some commands
use all relevant files; some commands have no default and will report an error if you don’t
specify files.

If a file name argument actually names a directory, then that directory and all files and
subdirectories (recursively) in it are used.

Here is a list of the tar commands:

-c
--create Create a new archive.

This command tells tar to create a new archive that contains the file(s) specified
on the command line. If you don’t specify files, all the files in the current
directory are used.
If the archive file already exists, it is overwritten; the old contents are lost.

-x
--extract
--get Extract files from an archive.

This command causes tar to extract the specified files from the archive. If no
file names are given, all the files in the archive will be extracted.

-t
--list List the contents of an archive.

This command causes tar to display a list of the files in the archive. If you
specify file names, only the files that you specify will be mentioned (but each
of them is mentioned only if it appears in the archive).

-d
--diff
--compare

Find differences between an archive and the corresponding online files.
This command causes tar to compare the archive with the files in the file
system. It will report differences in file size, mode, owner, and contents. If a
file exists in the archive, but not in the file system, tar will report this.
If you specify file names, those files are compared with the tape and they must
all exist in the archive. If you don’t specify files, all the files in the archive are
compared.

-r
--append Append files to the end of an archive.

Chapter 4: Basic tar Operations 50

This command causes tar to add the specified file(s) to the end of the archive.
This assumes that the archive file already exists and is in the proper format
(which probably means it was created previously with the tar program). If
the archive is not in a format that tar understands, the results will be unpre-
dictable.

You must specify the files to be used; there is no default.

-u
--update Only append files newer than the version in an archive.

This command causes tar to add the specified files to the end of the archive, like
‘--append’ (‘-r’), but only when a file doesn’t already exist in the archive or is
newer than the version in the archive (the last-modification time is compared).
Adding files to the end of an archive can be very slow.

You must specify the files to be used; there is no default.

-A
--catenate
--concatenate

Append existing archives to another archive.

This command is used for concatenating several archive files into one big archive
file. The files to operate on should all be archive files. They are all appended
to the end of the archive file which tar works on. (The other files are not
changed).

You might be tempted to use cat for this, but it won’t ordinarily work. A
tar archive contains data which indicates the end of the archive, so appended
material is ignored. This command works because it removes the end-of-archive
markers from the middle of the result.

--delete Delete from the archive (not on tapes!).

This command causes tar to delete the specified files from the archive. This
command is extremely slow. Warning: Use of this command on archives stored
on magnetic tape may result in a scrambled archive. There is no safe way
(except for completely re-writing the archive) to delete files from a magnetic
tape.

The program tar can create an archive, extract files from an archive, modify an archive,
or list an archive’s contents. Each time you run tar, you must give a command to specify
which one of these things you want to do.

The command must always be in the first argument to tar. This argument can also
contain options (

FIXME: pxref Invoking tar

). For compatibility with Unix tar, the first argument is always treated as containing
command and option letters even if it doesn’t start with ‘-’. Thus, ‘tar c’ is equivalent to
‘tar -c’: both of them specify the ‘--create’ (‘-c’) command to create an archive.

In addition, a set of long-named options are provided which can be used instead of or
intermixed with the single-letter flags. The long-named options are meant to be easy to

Chapter 4: Basic tar Operations 51

remember and logical, while the single letter flags may not always be. Long-named options
begin with ‘--’.

Arguments after the first are either options, if they start with ‘-’ or ‘--’, or files to
operate on.

The file names that you give as arguments are the files that tar will act on—for example,
they are the files to put in the archive, or the files to extract from it. If you don’t give any
file name arguments, the default depends on which command you used. Some commands
use all relevant files; some commands have no default and will report an error if you don’t
specify files.

If a file name argument actually names a directory, then that directory and all files and
subdirectories (recursively) in it are used.

Modifying Archives
Once an archive is created, you can add new archive members to it, add the contents of

another archive, add newer versions of members already stored, or delete archive members
already stored.

To find out what files are already stored in an archive, use ‘tar --list --file=archive-
name ’.
FIXME: xref Listing Contents

.

4.1 Creating a New Archive

(This message will disappear, once this node revised.)
The ‘--create’ (‘-c’) option causes tar to create a new archive. The files to be archived

are then named on the command line. Each file will be added to the archive with a member
name exactly the same as the name given on the command line. (When you give an absolute
file name tar actually modifies it slightly,
FIXME: ref Absolute
Names

.) If you list no files to be archived, then an empty archive is created.
If there are two many files to conveniently list on the command line, you can list the

names in a file, and tar will read that file.
FIXME: xref Reading Names from a File

.
If you name a directory, then tar will archive not only the directory, but all its contents,

recursively. For example, if you name ‘/’, then tar will archive the entire filesystem.
Do not use the option to add files to an existing archive; it will delete the archive and

write a new one. Use ‘--append’ (‘-r’) instead. (
FIXME: xref Adding to an Existing Archive

.)
There are various ways of causing tar to skip over some files, and not archive them.

FIXME: xref Specifying Names to tar
.

Chapter 4: Basic tar Operations 52

FIXME: operations should probably have examples, not tables.
To create an archive, use ‘--create’ (‘-c’). To name the archive, use ‘--file=archive-

name ’ in conjunction with the ‘--create’ (‘-c’) operation (
FIXME: pxref Archive Name

). If you do not name the archive, tar uses the value of the environment variable TAPE
as the file name for the archive, or, if that is not available, tar uses a default archive name,
usually that for tape unit zero.
FIXME: xref Archive Name

, for more information about specifying an archive name.
The following example creates an archive named ‘stooges’, containing the files ‘larry’,

‘moe’ and ‘curley’:
tar --create --file=stooges larry moe curley

If you specify a directory name as a file name argument, tar will archive all the files
in that directory. The following example creates an archive named ‘hail/hail/fredonia’,
containing the contents of the directory ‘marx’:

tar --create --file=hail/hail/fredonia marx

If you don’t specify files to put in the archive, tar archives all the files in the working
directory. The following example creates an archive named ‘home’ containing all the files in
the working directory:

tar --create --file=home

FIXME: xref File Name Lists
, for other ways to specify files to archive.
Note: In the example above, an archive containing all the files in the working directory

is being written to the working directory. GNU tar stores files in the working directory
in an archive which is itself in the working directory without falling into an infinite loop.
Other versions of tar may fall into this trap.

4.2 Adding to an Existing Archive

(This message will disappear, once this node revised.)
The ‘--append’ (‘-r’) option will case tar to add new files to an existing archive. It

interprets file names and member names in exactly the same manner as ‘--create’ (‘-c’).
Nothing happens if you don’t list any names.

This option never deletes members. If a new member is added under the same name as
an existing member, then both will be in the archive, with the new member after the old
one. For information on how this affects reading the archive,
FIXME: ref Multiple Members with the Same Name

.
This operation cannot be performed on some tape drives, unfortunately, due to deficien-

cies in the formats thoes tape drives use.
To add files to an archive, use ‘--append’ (‘-r’). The archive to be added to must already

exist and be in proper archive format (which normally means it was created previously using
tar). If the archive was created with a different block size than now specified, tar will report
an error (

Chapter 4: Basic tar Operations 53

FIXME: pxref Blocking Factor

). If the archive is not a valid tar archive, the results will be unpredictable. You
cannot add files to a compressed archive, however you can add files to the last volume of a
multi-volume archive.

FIXME: xref Matching Format Parameters

.

The following example adds the file ‘shemp’ to the archive ‘stooges’ created above:

tar --append --file=stooges shemp

You must specify the files to be added; there is no default.

‘--update’ (‘-u’) acts like ‘--append’ (‘-r’), but does not add files to the archive if there
is already a file entry with that name in the archive that has the same modification time.

Both ‘--update’ (‘-u’) and ‘--append’ (‘-r’) work by adding to the end of the archive.
When you extract a file from the archive, only the version stored last will wind up in the
file system. Because ‘--extract’ (‘-x’) extracts files from an archive in sequence, and
overwrites files with the same name in the file system, if a file name appears more than
once in an archive the last version of the file will overwrite the previous versions which have
just been extracted. You should avoid storing older versions of a file later in the archive.

Note: ‘--update’ (‘-u’) is not suitable for performing backups, because it doesn’t change
directory content entries, and because it lengthens the archive every time it is used.

FIXME: xref to scripted backup, listed incremental, for info on backups.

4.3 Updating an Archive

(This message will disappear, once this node revised.)

The ‘--update’ (‘-u’) option updates a tar archive by comparing the date of the specified
archive members against the date of the file with the same name. If the file has been
modified more recently than the archive member, then the archive member is deleted (as
with ‘--delete’) and then the file is added to the archive (as with ‘--append’ (‘-r’)). On
media where the ‘--delete’ option cannot be performed (such as magnetic tapes), the
‘--update’ (‘-u’) option similarly fails.

If no archive members are named (either on the command line or via
‘--files-from=file-of-names ’ (‘-T file-of-names ’)), then the entire archive
is processed in this manner.

4.4 Combining Archives

(This message will disappear, once this node revised.)

The ‘--concatenate’ (‘-A’) or [No value for “catenate”] option causes tar to add the
contents of several archives to an existing archive.

Name the archives to be catenated on the command line. (Nothing happens if you don’t
list any.) The members, and their member names, will be copied verbatim from those
archives. If this causes multiple members to have the same name, it does not delete either;
all the members with the same name coexist. For information on how this affects reading
the archive,

Chapter 4: Basic tar Operations 54

FIXME: ref Multiple Members with the Same Name

.

You must use this option to concatenate archives. If you just combine them with cat,
the result will not be a valid tar format archive.

This operation cannot be performed on some tape drives, unfortunately, due to deficien-
cies in the formats thoes tape drives use.

To append copies of an archive or archives to the end of another archive, use
‘--concatenate’ (‘-A’). The source and target archives must already exist and have been
created using compatable format parameters (

FIXME: pxref Matching Format Parameters

).

tar will stop reading an archive if it encounters an end-of-archive marker. The cat
utility does not remove end-of-archive markers, and is therefore unsuitable for concatenating
archives. ‘--concatenate’ (‘-A’) removes the end-of-archive marker from the target archive
before each new archive is appended.

FIXME: xref ignore-zeros

You must specify the source archives using ‘--file=archive-name ’ (‘-f
archive-name ’) (

FIXME: pxref Archive
Name

). If you do not specify the target archive , tar uses the value of the environment variable
TAPE, or, if this has not been set, the default archive name.

The following example adds the contents of the archive ‘hail/hail/fredonia’ to the
archive ‘stooges’ (both archives were created in examples above):

tar --catenate --file=stooges hail/hail/fredonia

If you need to retrieve files from an archive that was added to using the cat utility, use
the ‘--ignore-zeros’ (‘-i’) option (

FIXME: pxref Archive Reading Options

).

4.5 Removing Archive Members

(This message will disappear, once this node revised.)

You can use the ‘--delete’ option to remove members from an archive. Name the
members on the command line to be deleted. This option will rewrite the archive; because
of this, it does not work on tape drives. If you list no members to be deleted, nothing
happens.

To delete archive members from an archive, use ‘--delete’. You must specify the file
names of the members to be deleted. All archive members with the specified file names will
be removed from the archive.

The following example removes the file ‘curley’ from the archive ‘stooges’:

Chapter 4: Basic tar Operations 55

tar --delete --file=stooges curley

You can only use ‘--delete’ on an archive if the archive device allows you to write to
any point on the media.

Warning: Don’t try to delete an archive member from a magnetic tape, lest you
scramble the archive. There is no safe way (except by completely re-writing the
archive) to delete files from most kinds of magnetic tape.

FIXME: how about automatic detection of archive media? give error
FIXME: unless the archive device is either an ordinary file or different
FIXME: input and output (–file=-).

4.6 Listing Archive Members

(This message will disappear, once this node revised.)

The ‘--list’ (‘-t’) option will list the names of members of the archive. Name the
members to be listed on the command line (to modify the way these names are interpreted,

FIXME: pxref Specifying Names to
tar

). If you name no members, then ‘--list’ (‘-t’) will list the names of all the members
of the archive.

To see more than just the names of the members, use the ‘--verbose’ (‘-v’) option to
cause tar to print out a listing similar to that of ‘ls -l’.

Listing the Contents of an Archive

‘--list’ (‘-t’) prints a list of the file names of the archive members on the stan-
dard output. If you specify file name arguments on the command line (or using the
‘--files-from=file-of-names ’ (‘-T file-of-names ’) option,

FIXME: pxref File Name Lists

), only the files you specify will be listed, and only if they exist in the archive. Files not
specified will be ignored, unless they are under a specific directory.

If you include the ‘--verbose’ (‘-v’) option, tar prints an ‘ls -l’ type listing for the
archive.

FIXME: pxref Additional
Information

, for a description of the ‘--verbose’ (‘-v’) option.

If the blocking factor of the archive differs from the default, tar reports this.

FIXME: xref Blocking Factor

.

FIXME: xref Archive Reading Options

for a list of options which can be used to modify ‘--list’ (‘-t’)’s operation.

This example prints a list of the archive members of the archive ‘stooges’:

tar --list --file=stooges

tar responds:

Chapter 4: Basic tar Operations 56

larry
moe
shemp
marx/julius
marx/alexander
marx/karl

This example generates a verbose list of the archive members of the archive file ‘dwarves’,
which has a blocking factor of two:

tar --list -v --file=blocks

tar responds:
tar: Blocksize = 2 records
-rw------- ringo/user 42 May 1 13:29 1990 .bashful
-rw-rw-rw- ringo/user 42 Oct 4 13:29 1990 doc
-rw-rw-rw- ringo/user 42 Jul 20 18:01 1969 dopey
-rw-rw---- ringo/user 42 Nov 26 13:42 1963 grumpy
-rw-rw-rw- ringo/user 42 May 5 13:29 1990 happy
-rw-rw-rw- ringo/user 42 May 1 12:00 1868 sleepy
-rw-rw-rw- ringo/user 42 Jul 4 17:29 1776 sneezy

4.7 Extracting Archive Members

(This message will disappear, once this node revised.)
Use ‘--extract’ (‘-x’) or ‘--get’ to extract members from an archive. For each mem-

ber named (or for the entire archive if no members are named) on the command line—or
with ‘--files-from=file-of-names ’ (‘-T file-of-names ’)—the a file is created with the
contents of the archive member. The name of the file is the same as the member name.

Various options cause tar to extract more than just file contents, such as the owner, the
permissions, the modification date, and so forth.
FIXME: begin

The ‘--same-permissions’ (‘-p’) or ‘--preserve-permissions’ options cause tar to
cause the new file to have the same permissions as the original file did when it was placed
in the archive. Without this option, the current umask is used to affect the permissions.

When extrating, tar normally sets the modification time of the file to the value recorded
in the archive. The ‘--modification-time’ (‘-m’) option causes tar to omit doing this.
FIXME: end

To read archive members from the archive and write them into the file system, use
‘--extract’ (‘-x’). The archive itself is left unchanged.

If you do not specify the files to extract, tar extracts all the files in the archive. If you
specify the name of a directory as a file name argument, tar will extract all files which have
been stored as part of that directory. If a file was stored with a directory name as part of
its file name, and that directory does not exist under the working directory when the file is
extracted, tar will create the directory.
FIXME: xref Selecting Archive
Members

Chapter 4: Basic tar Operations 57

, for information on specifying files to extract.
The following example shows the extraction of the archive ‘stooges’ into an empty

directory:
tar --extract --file=stooges

Generating a listing of the directory (‘ls’) produces:
larry
moe
shemp
marx

The subdirectory ‘marx’ contains the files ‘julius’, ‘alexander’ and ‘karl’.
If you wanted to just extract the files in the subdirectory ‘marx’, you could specify that

directory as a file name argument in conjunction with the ‘--extract’ (‘-x’) operation:
tar --extract --file=stooges marx

Warning: Extraction can overwrite files in the file system. To avoid losing files
in the file system when extracting files from the archive with the same name,
use the ‘--keep-old-files’ (‘-k’) option (
FIXME: pxref File Writing Options
).

If the archive was created using ‘--block-size=512-size ’ (‘-b 512-size ’),
‘--compress’ (‘-Z’) or ‘--multi-volume’ (‘-M’), you must specify those format options
again when extracting files from the archive (
FIXME: pxref Format Variations

).

4.7.1 Options to Help Read Archives

(This message will disappear, once this node revised.)
FIXME: each option wants its own node. summary after menu

Normally, tar will request data in full block increments from an archive storage device.
If the device cannot return a full block, tar will report an error. However, some devices do
not always return full blocks, or do not require the last block of an archive to be padded out
to the next block boundary. To keep reading until you obtain a full block, or to accept an
incomplete block if it contains an end-of-archive marker, specify the ‘--read-full-blocks’
(‘-B’) option in conjunction with the ‘--extract’ (‘-x’) or ‘--list’ (‘-t’) operations.
FIXME: xref Listing Contents

.
The ‘--read-full-blocks’ (‘-B’) option is turned on by default when tar reads an

archive from standard input, or from a remote machine. This is because on BSD Unix
systems, attempting to read a pipe returns however much happens to be in the pipe, even
if it is less than was requested. If this option were not enabled, tar would fail as soon as it
read an incomplete block from the pipe.

If you’re not sure of the blocking factor of an archive, you can read the archive by
specifying ‘--read-full-blocks’ (‘-B’) and ‘--block-size=512-size ’ (‘-b 512-size ’),

Chapter 4: Basic tar Operations 58

using a blocking factor larger than what the archive uses. This lets you avoid having to
determine the blocking factor of an archive.
FIXME: xref Blocking Factor

.

‘--read-full-blocks’
‘-B’ Use in conjunction with ‘--extract’ (‘-x’) to read an archive which contains

incomplete blocks, or one which has a blocking factor less than the one specified.

Normally tar stops reading when it encounters a block of zeros between file entries
(which usually indicates the end of the archive). ‘--ignore-zeros’ (‘-i’) allows tar to
completely read an archive which contains a block of zeros before the end (i.e. a damaged
archive, or one which was created by cat-ing several archives together).

The ‘--ignore-zeros’ (‘-i’) option is turned off by default because many versions of tar
write garbage after the end-of-archive entry, since that part of the media is never supposed
to be read. GNU tar does not write after the end of an archive, but seeks to maintain
compatablity among archiving utilities.

‘--ignore-zeros’
‘-i’ To ignore blocks of zeros (ie. end-of-archive entries) which may be encountered

while reading an archive. Use in conjunction with ‘--extract’ (‘-x’) or ‘--list’
(‘-t’).

If you are using a machine with a small amount of memory, and you need to process
large list of file names, you can reduce the amount of space tar needs to process the list.
To do so, specify the ‘--same-order’ (‘-s’) option and provide an ordered list of file names.
This option tells tar that the name arguments provided on the command line, or read from
a file using the ‘--files-from=file-of-names ’ (‘-T file-of-names ’) option, are listed in
the same order as the files in the archive.

You can create a file containing an ordered list of files in the archive by storing the
output produced by ‘tar --list --file=archive-name ’.
FIXME: xref Listing Contents

, for information on the ‘--list’ (‘-t’) operation.
This option is probably never needed on modern computer systems.

‘--same-order’
‘--preserve-order’
‘-s’ To process large lists of file names on machines with small amounts of mem-

ory. Use in conjunction with ‘--compare’ (‘-d’), ‘--list’ (‘-t’) or ‘--extract’
(‘-x’).

FIXME: we don’t need/want –preserve to exist any more

4.7.2 Changing How tar Writes Files

FIXME: find a better title
(This message will disappear, once this node revised.)

Normally, tar writes extracted files into the file system without regard to the files already
on the system—files with the same name as archive members are overwritten. To prevent

Chapter 4: Basic tar Operations 59

tar from extracting an archive member from an archive, if doing so will overwrite a file in
the file system, use ‘--keep-old-files’ (‘-k’) in conjunction with the ‘--extract’ (‘-x’)
operation. When this option is specified, tar reports an error stating the name of the files
in conflict, instead of writing the file from the archive.

‘--keep-old files’
‘-k’ Prevents tar from overwriting files in the file system during extraction.

Normally, tar sets the modification times of extracted files to the modification times
recorded for the files in the archive, but limits the permissions of extracted files by the
current umask setting.

To set the modification times of extracted files to the time when the files were extracted,
use the ‘--modification-time’ (‘-m’) option in conjunction with ‘--extract’ (‘-x’).

‘--modification-time’
‘-m’ Sets the modification time of extracted archive members to the time they were

extracted, not the time recorded for them in the archive. Use in conjunction
with ‘--extract’ (‘-x’).

To set the modes (access permissions) of extracted files to those recorded for those files
in the archive, use the [No value for “same-persmissions”] option in conjunction with the
‘--extract’ (‘-x’) operation.
FIXME: mib — should be aliased to ignore-umask.

‘--preserve-permission’
‘--same-permission’
‘--ignore-umask’
‘-p’ Set modes of extracted archive members to those recorded in the archive, instead

of current umask settings. Use in conjunction with ‘--extract’ (‘-x’).
FIXME: following paragraph needs to be rewritten: why doesnt’ this cat
FIXME: files together, why is this useful. is it really useful with
FIXME: more than one file?

To write the files extracted to the standard output, instead of creating the files on the
file system, use ‘--to-stdout’ (‘-O’) in conjunction with ‘--extract’ (‘-x’). This option is
useful if you are extracting files to send them through a pipe, and do not need to preserve
them in the file system.

‘--to-stdout’
‘-O’ Writes files to the standard output. Used in conjunction with ‘--extract’

(‘-x’).
FIXME: why would you want to do such a thing, how are files separated on
FIXME: the standard output? is this useful with more that one file? are
FIXME: pipes the real reason?

4.7.3 Recovering From Scarce Disk Space

(This message will disappear, once this node revised.)
If a previous attempt to extract files failed due to lack of disk space, you can use

‘--starting-file=name ’ (‘-K name ’) to start extracting only after file name when extract-
ing files from the archive. This assumes, of course, that there is now free space, or that you
are now extracting into a different file system.

Chapter 4: Basic tar Operations 60

‘--starting-file=file name ’
‘-K file name ’

Starts an operation in the middle of an archive. Use in conjunction with
‘--extract’ (‘-x’) or ‘--list’ (‘-t’).

If you notice you are running out of disk space during an extraction operation, you can
also suspend tar, remove unnecessary files from the file system, and then restart the same
tar operation. In this case, ‘--starting-file=name ’ (‘-K name ’) is not necessary.
FIXME: xref –incremental, xref –interactive, xref –exclude

4.8 Comparing Archives Members with Files

(This message will disappear, once this node revised.)
The ‘--compare’ (‘-d’) or ‘--diff’ option compares the contents of the specified archive

members against the files with the same names, and reports its findings. If no members
are named on the command line, or through ‘--files-from=file-of-names ’ (‘-T file-

of-names ’), then the entire archive is so compared.

4.9 Matching the Format Parameters

(This message will disappear, once this node revised.)
Some format parameters must be taken into consideration when modifying an archive:
Compressed archives cannot be modified.
You have to specify the block size of the archive when modifying an archive with a

non-default block size.
Multi-volume archives can be modified like any other archive. To add files to a multi-

volume archive, you need to only mount the last volume of the archive media (and new
volumes, if needed). For all other operations, you need to use the entire archive.

If a multi-volume archive was labeled using ‘--label=archive-label ’ (‘-V archive-

label ’) (
FIXME: pxref Archive Label

) when it was created, tar will not automatically label volumes which are added later. To
label subsequent volumes, specify ‘--label=archive-label ’ (‘-V archive-label ’) again
in conjunction with the ‘--append’ (‘-r’), ‘--update’ (‘-u’) or ‘--concatenate’ (‘-A’) op-
eration.
FIXME: example
FIXME: xref somewhere, for more information about format parameters.

Chapter 5: Specifying Names to tar 61

5 Specifying Names to tar

(This message will disappear, once this node revised.)

5.1 Changing the Archive Name

(This message will disappear, once this node revised.)
By default, tar uses an archive file name compiled in when tar was built. Usually this

refers to some physical tape drive on the machine. Often, the installer of tar didn’t set the
default to anything meaningful at all.

As a result, most uses of tar need to tell tar where to find (or create) the archive.
The ‘--file=archive-name ’ (‘-f archive-name ’) option selects another file to use as the
archive.

If the archive file name includes a colon (‘:’), then it is assumed to be a file on another
machine. If the archive file is ‘user@host:file ’, then file is used on the host host. The
remote host is accessed using the rsh program, with a username of user. If the username is
omitted (along with the ‘@’ sign), then your user name will be used. (This is the normal rsh
behavior.) It is necessary for the remote machine, in addition to permitting your rsh access,
to have the ‘/usr/ucb/rmt’ program installed. If you need to use a file whose name includes
a colon, then the remote tape drive behavior can be inhibited by using the ‘--force-local’
option.

If the file name you give to ‘--file=archive-name ’ (‘-f archive-name ’) is a single
dash (‘-’), then tar will read the archive from (or write it to) standard input (or standard
output).

The Name of an Archive
An archive can be saved as a file in the file system, sent through a pipe or over a network,

or written to an I/O device such as a tape or disk drive. To specify the name of the archive,
use the ‘--file=archive-name ’ (‘-f archive-name ’) option.

An archive name can be the name of an ordinary file or the name of an I/O device. tar
always needs an archive name—if you do not specify an archive name, the archive name
comes from the environment variable TAPE or, if that variable is not specified, a default
archive name, which is usually the name of tape unit zero (ie. /dev/tu00).

If you use ‘-’ as an archive-name, tar reads the archive from standard input (when
listing or extracting files), or writes it to standard output (when creating an archive). If
you use ‘-’ as an archive-name when modifying an archive, tar reads the original archive
from its standard input and writes the entire new archive to its standard output.
FIXME: does standard input and output redirection work with all
FIXME: operations?
FIXME: need example for standard input and output (screen and keyboard?)

To specify an archive file on a device attached to a remote machine, use the following:
--file=hostname:/dev/file name

tar will complete the remote connection, if possible, and prompt you for a username and
password. If you use ‘--file=@hostname:/dev/file name ’, tar will complete the remote
connection, if possible, using your username as the username on the remote machine.

Chapter 5: Specifying Names to tar 62

FIXME: is this clear?

‘--file=archive-name ’
‘-f archive-name ’

Names the archive to create or operate on. Use in conjunction with any oper-
ation.

Selecting Archive Members
File Name arguments specify which files in the file system tar operates on, when creating

or adding to an archive, or which archive members tar operates on, when reading or deleting
from an archive. (
FIXME: pxref Reading and Writing

.)
To specify file names, you can include them as the last arguments on the command line,

as follows:
tar operation [option1 option2 ..] [file name-1 file name-2 ...]

If you specify a directory name as a file name argument, all the files in that directory
are operated on by tar.

If you do not specify files when tar is invoked, tar operates on all the non-directory
files in the working directory (if the operation is ‘--create’ (‘-c’)), all the archive members
in the archive (if a read operation is specified), or does nothing (if any other operation is
specified).

When specifying the names of files or members to tar, it by default takes the names of
the files from the command line. There are other ways, however, to specify file or member
names, or to modify the manner in which tar selects the files or members upon which to
operate. In general, these methods work both for specifying the names of files and archive
members.

5.2 Selecting Files by Characteristic

To avoid crossing file system boundaries when archiving parts of a directory tree, use
‘--one-file-system’ (‘-l’). This option only affects files that are archived because they
are in a directory that is being archived; files explicitly named on the command line are
archived regardless of where they reside.

This option is useful for making full or incremental archival backups of a file system.
If this option is used in conjunction with ‘--verbose’ (‘-v’), files that are excluded are

mentioned by name on the standard error.

‘--one-file-system’
‘-l’ Prevents tar from crossing file system boundaries when archiving. Use in con-

junction with any write operation.

To avoid operating on files whose names match a particular pattern, use the
‘--exclude=pattern ’ or ‘--exclude-from=file-of-patterns ’ (‘-X file-of-patterns ’)
options.

When you specify the ‘--exclude=pattern ’ option, tar ignores files which match the
pattern, which can be a single file name or a more complex expression. Thus, if you invoke

Chapter 5: Specifying Names to tar 63

tar with ‘tar --create --exclude=*.o’, no files whose names end in ‘.o’ are included in
the archive.
FIXME: what other things can you use besides "*"?

‘--exclude-from=file-of-patterns ’ (‘-X file-of-patterns ’) acts like
‘--exclude=pattern ’, but specifies a file file containing a list of patterns. tar ignores files
with names that fit any of these patterns.

You can use either option more than once in a single command.

‘--exclude=pattern ’
Causes tar to ignore files that match the pattern.

‘--exclude-from=file ’
Causes tar to ignore files that match the patterns listed in file.

FIXME: –exclude-from used to be "–exclude", –exclude didn’t used to
FIXME: exist.

To operate only on files with modification or status-change times after a particular date,
use ‘--after-date=date ’ (‘-N date ’). You can use this option with ‘--create’ (‘-c’) or
‘--append’ (‘-r’) to insure only new files are archived, or with ‘--extract’ (‘-x’) to insure
only recent files are resurrected.
FIXME: or –newer date

‘--newer-mtime=date ’ acts like ‘--after-date=date ’ (‘-N date ’) but tests just the
modification times of the files, ignoring status-change times.
FIXME: need example of –newer-mtime with quoted argument

Remember that the entire date argument should be quoted if it contains any spaces.
Please Note: ‘--after-date=date ’ (‘-N date ’) and ‘--newer-mtime=date ’ should not

be used for incremental backups. Some files (such as those in renamed directories) are not
selected up properly by these options.
FIXME: xref to incremental backup chapter when node name is decided.

‘--after-date=date ’
‘--newer=date ’
‘-N date ’ Acts on files only if their modification or inode-changed times are later than

date. Use in conjunction with any operation.

‘--newer-mtime=date ’
Acts like ‘--after-date=date ’ (‘-N date ’), but only looks at modification
times.

FIXME: following is the getdate date format — needs to be re-written,
FIXME: made a sub-node:

Time/Date Formats Accepted by getdate (omitting obscure constructions)
The input consists of one or more of: time zone day date year in any order.
Those in turn consist of (‘|’ and ‘/’ mean ‘or’, ‘[]’ means ‘optional’):
time: H am/pm | H:M [am/pm] | H:M:S [am/pm] zone: timezone-name | timezone-

name dst day: day-name | day-name, | N day-name date: M/D | M/D/Y | month-name
D | month-name D, Y | D month-name | D month-name Y year: Y

Chapter 5: Specifying Names to tar 64

am can also be a.m., pm can also be p.m. case and spaces around punctuation are not
significant.
FIXME: month and day names can be abbreviated.

5.2.1 Reading Names from a File

(This message will disappear, once this node revised.)
Instead of giving the names of files or archive members on the command line, you

can put the names into a file, and then use the ‘--files-from=file-of-names ’ (‘-T
file-of-names ’) option to tar. Give the name of the file which contains the list
as the argument to ‘--files-from=file-of-names ’ (‘-T file-of-names ’). The file
names should be separated by newlines in the list. If you give a single dash as a file
name for ‘--files-from=file-of-names ’ (‘-T file-of-names ’), that is, you specify
‘--files-from=-’ (‘-T -’), then the file names are read from standard input.

If you want to specify names that might contain newlines, use the ‘--null’ option. Then,
the file names should be separated by NUL characters (ASCII 000) instead of newlines. In
addition, the ‘--null’ option turns off the ‘--directory=directory ’ (‘-C directory ’)
option (
FIXME: pxref Changing Directory

).
Reading a List of File Names from a File

(This message will disappear, once this node revised.)
To read file names from a file on the file system, instead of from the command line,

use the ‘--files-from=file-of-names ’ (‘-T file-of-names ’) option. If you specify ‘-’
as file, the file names are read from standard input. Note that using both ‘--files-from=-’
(‘-T -’) and ‘--file=-’ (‘-f -’) in the same command will not work unless the operation
is ‘--create’ (‘-c’).
FIXME: xref Archive Name

, for an explanation of the ‘--file=archive-name ’ (‘-f archive-name ’) option.

‘--files-from=file ’
‘-T file ’ Reads file name arguments from a file on the file system, instead of from the

command line. Use in conjunction with any operation.

5.2.2 Excluding Some Files

(This message will disappear, once this node revised.)
The ‘--exclude=pattern ’ option will prevent any file or member which matches the

regular expression pattern from being operated on. For example, if you want to create an
archive with all the contents of ‘/tmp’ except the file ‘/tmp/foo’, you can use the command
‘tar --create --file=arch.tar --exclude=foo’.

If there are many files you want to exclude, you can use the ‘--exclude-from=file-of-
patterns ’ (‘-X file-of-patterns ’) option. This works just like the ‘--files-from=file-
of-names ’ (‘-T file-of-names ’) option: specify the name of a file as exclude-list which
contains the list of patterns you want to exclude.
FIXME: xref Regular Expressions

for more information on the syntax and meaning of regular expressions.

Chapter 5: Specifying Names to tar 65

5.2.3 Operating Only on New Files

(This message will disappear, once this node revised.)
The ‘--after-date=date ’ (‘-N date ’) or ‘--newer=date ’ limits tar to only operating

on files which have been modified after the date specified. (For more information on how
to specify a date,
FIXME: xref Date Formats

.) A file is considered to have changed if the contents have been modified, or if the
owner, permissions, and so forth, have been changed.

If you only want tar make the date comparison on the basis of the actual contents of
the file’s modification, then use the ‘--newer-mtime=date ’ option.

You should never use this option for making incremental dumps. To learn how to use
tar to make backups,
FIXME: ref Making Backups

.

5.2.4 Crossing Filesystem Boundaries

(This message will disappear, once this node revised.)
The ‘--one-file-system’ (‘-l’) option causes tar to modify its normal behavior in

archiving the contents of directories. If a file in a directory is not on the same filesystem as
the directory itself (because it is a mounted filesystem in its own right), then tar will not
archive that file, or (if it is a directory itself) anything beneath it.

This does not necessarily limit tar to only archiving the contents of a single filesystem,
because all files named on the command line, or through the ‘--files-from=file-of-
names ’ (‘-T file-of-names ’) option, will always be archived.

5.3 Local file selection

(This message will disappear, once this node revised.)
Local file selection

-C dir

--directory dir

Change to directory dir.
This option causes tar to change into the directory dir before continuing. This
option can be interspersed with the files tar is to work on. For example,

tar -c iggy ziggy -C baz melvin

will place the files ‘iggy’ and ‘ziggy’ from the current directory on the tape,
followed by the file ‘melvin’ from the directory ‘baz’. This option is especially
useful when you have several widely separated files that you want to store in
the same directory in the archive.
Here, the file ‘melvin’ is recorded in the archive under the precise name
‘melvin’, not ‘baz/melvin’. Thus, the archive will contain three files that all
appear to have come from the same directory; if the archive is extracted with
plain ‘tar -x’, all three files will be created in the current directory.
Contrast this with the command:

Chapter 5: Specifying Names to tar 66

tar -c iggy ziggy bar/melvin

which records the third file in the archive under the name ‘bar/melvin’ so that,
if plain ‘tar -x’ is used, the third file will be created in a subdirectory named
‘bar’.

Suppose that, without changing your current directory, you want to call tar to
dump files from ‘/users/ctd/dipp’ say. Then ‘--directory=directory ’ (‘-C
directory ’) is for you. You could do things like:

tar cfC archive.tar /users/ctd/dipp .

(the ‘.’ means the current directory, once the ‘--directory=directory ’ (‘-C
directory ’) obeyed).

Some people might want some option to extract everything from an archive in
the current directory, ignore directory structure in the archive. This is so rarely
proper that I doubt such an option would be really useful. It would only help
getting around improper tar usage, it might even encourage improper usage. In
general, ‘--directory=directory ’ (‘-C directory ’) might be used to produce
archives with a cleaner structure in the first place.

-T filename

--files-from=filename
Get names to extract or create from file filename.

Instead of taking the list of files to work on from the command line, the list of
files to work on is read from the file filename. If filename is given as ‘-’, the
list is read from standard input. Note that using both ‘-T -’ and ‘-f -’ will not
work unless you are using the ‘--create’ (‘-c’) command.

This is typically useful when you have generated the list of files to archive with
find.

--null This option causes ‘--files-from=file-of-names ’ (‘-T file-of-names ’) to
read file names terminated by a NUL instead of a newline, so files whose names
contain newlines can be archived using ‘--files-from=file-of-names ’ (‘-T
file-of-names ’). The ‘--null’ option is just like the one in GNU xargs and
cpio, and is useful with the ‘-print0’ predicate of GNU find. In tar, ‘--null’
also causes ‘--directory=directory ’ (‘-C directory ’) options to be treated
as file names to archive, in case there are any files out there called ‘-C’.

--exclude=file
Exclude file file.

-X file

--exclude-from=file
Exclude files listed in file.

This option causes tar to read a list of regular expressions (in shell wildcard
syntax), one per line, from file; tar will ignore files matching those regular
expressions. Thus if tar is called as ‘tar -c -X foo .’ and the file ‘foo’ contains
a single line ‘*.o’, no files whose names end in ‘.o’ will be added to the archive.
Multiple ‘--exclude=pattern ’ options may be given.

Chapter 5: Specifying Names to tar 67

-P
--absolute-names

Do not strip leading /s from file names.
By default, GNU tar drops a leading ‘/’ on input or output. This option turns
off this behavior; it’s equivalent to changing to the root directory before running
tar (except it also turns off the usual warning message).

-l
--one-file-system

Stay in local filesystem when creating archive.
This option causes tar to not cross filesystem boundaries when archiving parts
of a directory tree. This option only affects files that are archived because they
are in a directory that is archived; files named on the command line are archived
regardless, and they can be from various file systems.
This option is useful for making full or incremental archival backups of a filesys-
tem, as with the Unix dump command.
Files skipped due to this option are mentioned on standard error.

-K name

--starting-file=name
Begin at file name in the archive.
The ‘--starting-file=name ’ (‘-K name ’) option causes tar to begin extract-
ing or listing the archive with the file filename, and to consider only the files
starting at that point in the archive. This is useful if a previous attempt to ex-
tract files failed when it reached filename due to lack of free space. (Assuming,
of course, that there is now free space, or that you are now extracting into a
different file system.)

-N date

--newer=date
--after-date=date

Only store files newer than date.
This option causes tar to only work on files whose modification or inode-
changed times are newer than the date given. The main use is for creating
an archive; then only new files are written. If extracting, only newer files are
extracted.
Remember that the entire date argument must be quoted if it contains any
spaces.
The date is parsed using getdate.

Changing the Names of Members when Archiving

5.3.1 Changing Directory

(This message will disappear, once this node revised.)
The ‘--directory=directory ’ (‘-C directory ’) option causes tar to change its current

working directory to directory. Unlike most options, this one is processed at the point it
occurs within the list of files to be processed. Consider the following command:

Chapter 5: Specifying Names to tar 68

tar --create --file=foo.tar -C /etc passwd hosts -C /lib libc.a

This command will place the files ‘/etc/passwd’, ‘/etc/hosts’, and ‘/lib/libc.a’ into
the archive. However, the names of the archive members will be exactly what they were on
the command line: ‘passwd’, ‘hosts’, and ‘libc.a’. The ‘--directory=directory ’ (‘-C
directory ’) option is frequently used to make the archive independent of the original name
of the directory holding the files.

Note that ‘--directory=directory ’ (‘-C directory ’) options are interpreted consecu-
tively. If ‘--directory=directory ’ (‘-C directory ’) option specifies a relative file name,
it is interpreted relative to the then current directory, which might not be the same as the
original current working directory of tar, due to a previous ‘--directory=directory ’ (‘-C
directory ’) option.

When using ‘--files-from=file-of-names ’ (‘-T file-of-names ’) (
FIXME: pxref Reading Names from a File

), you can put ‘-C’ options in the file list. Unfortunately, you cannot put ‘--directory’
options in the file list. (This interpretation can be disabled by using the ‘--null’ option.)

Changing the Working Directory Within a List of File Names
(This message will disappear, once this node revised.)

To change working directory in the middle of a list of file names, either on the command
line or in a file specified using ‘--files-from=file-of-names ’ (‘-T file-of-names ’), use
‘--directory=directory ’ (‘-C directory ’). This will change the working directory to the
directory directory after that point in the list. For example,

tar --create iggy ziggy --directory=baz melvin

will place the files ‘iggy’ and ‘ziggy’ from the current directory into the archive, followed
by the file ‘melvin’ from the directory ‘baz’. This option is especially useful when you have
several widely separated files that you want to store in the same directory in the archive.

Note that the file ‘melvin’ is recorded in the archive under the precise name ‘melvin’,
not ‘baz/melvin’. Thus, the archive will contain three files that all appear to have come
from the same directory; if the archive is extracted with plain ‘tar --extract’, all three
files will be written in the current directory.

Contrast this with the command
tar -c iggy ziggy bar/melvin

which records the third file in the archive under the name ‘bar/melvin’ so that, if the
archive is extracted using ‘tar --extract’, the third file will be written in a subdirectory
named ‘bar’.

‘--directory=‘directory’’
‘-C ‘directory’’

Changes the working directory.
FIXME: need to test how extract deals with this, and add an example

5.3.2 Absolute File Names

(This message will disappear, once this node revised.)
When tar extracts archive members from an archive, it strips any leading slashes (‘/’)

from the member name. This causes absolute member names in the archive to be treated

Chapter 5: Specifying Names to tar 69

as relative file names. This allows you to have such members extracted wherever you want,
instead of being restricted to extracting the member in the exact directory named in the
archive. For example, if the archive member has the name ‘/etc/passwd’, tar will extract
it as if the name were really ‘etc/passwd’.

Other tar programs do not do this. As a result, if you create an archive whose member
names start with a slash, they will be difficult for other people with an inferior tar program
to use. Therefore, GNU tar also strips leading slashes from member names when putting
members into the archive. For example, if you ask tar to add the file ‘/bin/ls’ to an
archive, it will do so, but the member name will be ‘bin/ls’.

If you use the ‘--absolute-names’ (‘-P’) option, tar will do neither of these transfor-
mations.
FIXME: is this what this does, or does it just preserve the slash?

To archive or extract files relative to the root directory, specify the ‘--absolute-names’
(‘-P’) option.

Normally, tar acts on files relative to the working directory—ignoring superior directory
names when archiving, and ignoring leading slashes when extracting.

When you specify ‘--absolute-names’ (‘-P’), tar stores file names including all superior
directory names, and preserves leading slashes. If you only invoked tar from the root
directory you would never need the ‘--absolute-names’ (‘-P’) option, but using this option
may be more convenient than switching to root.
FIXME: should be an example in the tutorial/wizardry section using this
FIXME: to transfer files between systems.
FIXME: is write access an issue?

‘--absolute-names’
Preserves full file names (inclusing superior dirctory names) when archiving
files. Preserves leading slash when extracting files.

Chapter 6: Being Even More Careful 70

6 Being Even More Careful

6.1 GNU tar documentation

Being careful, the first thing is really checking that you are using GNU tar, indeed. The
‘--version’ option will generate a message giving confirmation that you are using GNU
tar, with the precise version of GNU tar you are using. tar identifies itself and prints the
version number to the standard output, then immediately exits successfully, without doing
anything else, ignoring all other options. For example, ‘tar --version’ might return:

GNU tar version 1.11.8

Another thing you might want to do is checking the spelling or meaning of some particular
tar option, without resorting to this manual, for once you have carefully read it. GNU tar
has a short help feature, triggerable through the ‘--help’ option. By using this option,
tar will print a usage message listing all available options on standard output, then exit
successfully, without doing anything else and ignoring all other options. Even if this is only
a brief summary, it may be several screens long. So, if you are not using some kind of
scrollable window, you might prefer to use something like:

tar --help | less

presuming, here, that you like using less for a pager. Other popular pagers are more and
pg.

The perceptive reader would have noticed some contradiction in the previous paragraphs.
It is written that both ‘--version’ and ‘--help’ print something, and have all other options
ignored. In fact, they cannot ignore each other, and one of them has to win. We do not
specify which is stronger, here; experiment if you really wonder!

The short help output is quite succint, and you might have to get back to the full
documentation for precise points. If you are reading this paragraph, you already have the
tar manual in some form. This manual is available in printed form, as a kind of small
book. It may printed out of the GNU tar distribution, provided you have TEX already
installed somewhere, and a laser printer around. Just configure the distribution, execute
the command ‘make dvi’, then print ‘doc/tar.dvi’ the usual way (contact your local guru
to know how). If GNU tar has been conveniently installed at your place, this manual is
also available in interactive, hypertextual form as an Info file. Just call ‘info tar’ or, if
you do not have the info program handy, use the Info reader provided within GNU Emacs,
calling ‘tar’ from the main Info menu.

6.2 Checking tar progress

Typically, tar performs most operations without reporting any information to the user ex-
cept error messages. When using tar with many options, particularly ones with complicated
or difficult-to-predict behavior, it is possible to make serious mistakes. tar provides several
options that make observing tar easier. These options cause tar to print information as
it progresses in its job, and you might want to use them just for being more careful about
what is going on, or merely for entertaining yourself. If you have encountered a problem
when operating on an archive, however, you may need more information than just an error
message in order to solve the problem. The following options can be helpful diagnostic
tools.

Chapter 6: Being Even More Careful 71

Normally, the ‘--list’ (‘-t’) command to list an archive prints just the file names
(one per line) and the other commands are silent. When used with most operations, the
‘--verbose’ (‘-v’) option causes tar to print the name of each file or archive member as it
is processed. This and the other options which make tar print status information can be
useful in monitoring tar.

With ‘--create’ (‘-c’) or ‘--extract’ (‘-x’), ‘--verbose’ (‘-v’) used once just prints
the names of the files or members as they are processed. Using it twice causes tar to print a
longer listing (reminiscent of ‘ls -l’) for each member. Since ‘--list’ (‘-t’) already prints
the names of the members, ‘--verbose’ (‘-v’) used once with ‘--list’ (‘-t’) causes tar to
print an ‘ls -l’ type listing of the files in the archive. The following examples both extract
members with long list output:

tar --extract --file=archive.tar --verbose --verbose
tar xvv archive.tar

Verbose output appears on the standard output except when an archive is being written
to the standard output, as with ‘tar --create --file=- --verbose’ (‘tar cfv -’, or even
‘tar cv’—if the installer let standard output be the default archive). In that case tar writes
verbose output to the standard error stream.

The ‘--totals’ option—which is only meaningful when used with ‘--create’ (‘-c’)—
causes tar to print the total amount written to the archive, after it has been fully created.

The ‘--checkpoint’ option prints an occasional message as tar reads or writes the
archive. In fact, it print directory names while reading the archive. It is designed for those
who don’t need the more detailed (and voluminous) output of ‘--record-number’ (‘-R’),
but do want visual confirmation that tar is actually making forward progress.
FIXME: There is some confusion here. It seems that -R once wrote a
FIXME: message at ‘every’ block read or written.

The ‘--show-omitted-dirs’ option, when reading an archive—with ‘--list’ (‘-t’) or
‘--extract’ (‘-x’), for example—causes a message to be printed for each directory in the
archive which is skipped. This happens regardless of the reason for skipping: the directory
might not have been named on the command line (implicitly or explicitly), it might be
excluded by the use of the ‘--exclude=pattern ’ option, or some other reason.

If ‘--record-number’ (‘-R’) is used, tar prints, along with every message it would nor-
mally produce, the record number within the archive where the message was triggered. This
option is especially useful when reading damaged archives, since it helps pinpoint the dam-
aged sections. It can also be used with ‘--list’ (‘-t’) when listing a file-system backup
tape, allowing you to choose among several backup tapes when retrieving a file later, in
favor of the tape where the file appears earliest (closest to the front of the tape).
FIXME: xref when the node name is set and the backup section written

6.3 Asking for Confirmation During Operations

Typically, tar carries out a command without stopping for further instructions. In some
situations however, you may want to exclude some files and archive members from the
operation (for instance if disk or storage space is tight). You can do this by excluding
certain files automatically (
FIXME: pxref File Exclusion

Chapter 6: Being Even More Careful 72

), or by performing an operation interactively, using the ‘--interactive’ (‘-w’) option.
tar also accepts ‘--confirmation’ for this option.

When the ‘--interactive’ (‘-w’) option is specified, before reading, writing, or deleting
files, tar first prints a message for each such file, telling what operation it intends to take,
then asks for confirmation on the terminal. The actions which require confirmation include
adding a file to the archive, extracting a file from the archive, deleting a file from the archive,
and deleting a file from disk. To confirm the action, you must type a line of input beginning
with ‘y’. If your input line begins with anything other than ‘y’, tar skips that file.

If tar is reading the archive from the standard input, tar opens the file ‘/dev/tty’ to
support the interactive communications.

6.4 Verifying Data as It is Stored

You can insure the accuracy of an archive by comparing files in the system with archive
members. tar can compare an archive to the file system as the archive is being written, to
verify a write operation, or can compare a previously written archive, to insure that it is
up to date.

To check for discrepancies in an archive immediately after it is written, use the ‘--verify’
(‘-W’) option in conjunction with the ‘--create’ (‘-c’) operation. When this option is spec-
ified, tar checks archive members against their counterparts in the file system, and reports
discrepancies on the standard error. In multi-volume archives, each volume is verified after
it is written, before the next volume is written.

To verify an archive, you must be able to read it from before the end of the last written
entry. This option is useful for detecting data errors on some tapes. Archives written to
pipes, some cartridge tape drives, and some other devices cannot be verified.

6.5 Comparing an Archive with the File System

(This message will disappear, once this node revised.)
‘--compare’ (‘-d’) compares archive members in an existing archive with their counter-

parts in the file system, and reports differences in file size, mode, owner, modification date
and contents. If a file is represented in the archive but does not exist in the file system, tar
reports a difference.

If you use file name arguments in conjunction with ‘tar --compare’, tar compares the
archived versions of the files specified with their counterparts in the file system. If you
specify a file that is not in the archive, tar will report an error. If you don’t specify any
files, tar compares all the files in the archive.

Because tar only checks files in the archive against files in the file system, and not vice
versa, it ignores files in the file system that do not exist in the archive.

The following example compares the archive members ‘larry’, ‘moe’ and ‘curly’ in the
archive ‘stooges’ with files of the same name in the file system.

tar --compare --file=stooges larry moe curly

If a file, for example ‘curly’, did not exist in the archive, tar would report an error, as
follows:

curly: does not exist

Chapter 6: Being Even More Careful 73

6.6 Making tar Archives More Portable

Creating a tar archive on a particular system, meant to be later useful on many other
machines and with other versions of tar, is more a challenge than you might think. tar
archive formats evolved since the first versions of Unix, many such formats are flying around,
not always comptabile between them. This section wants to discuss a few problems, and
give some advice, for making tar archives more portable.

One golden rule is simplicity. For example, limit your tar archives to contain only
regular files and directories, avoiding other kind of special files. Do not attempt to save
sparse files or contiguous files as such. Let’s discuss a few more problems, in turn.

6.6.1 Portable Names

Use straight file and directory names, made up of printable ASCII characters, avoiding
colons, slashes, backslashes, and other dangerous characters. Avoid deep directory nest-
ing. Accounting for oldish System V machines, limit your file and directory names to 14
characters or less.

If you intend to have your tar archives to be read under MSDOS, you should not rely
on case distinction for file names, and you might use the GNU doschk program for helping
you further diagnosing illegal MSDOS names, which are even more limited than System
V’s.

6.6.2 Symbolic Links

Normally, when tar archives a symbolic link, it writes a record to the archive naming the
target of the link. In that way, the tar archive is a faithful record of the filesystem contents.
‘--dereference’ (‘-h’) is used with ‘--create’ (‘-c’), and causes tar to archive the files
symbolic links point to, instead of the links themselves. When this option is used, when
tar encounters a symbolic link, it will archive the linked-to file, instead of simply recording
the presence of a symbolic link.

The name under which the file is stored in the file system is not recorded in the archive.
To record both the symbolic link name and the file name in the system, archive the file
under both names. If all links were recorded automatically by tar, an extracted file might
be linked to a file name that no longer exists in the file system.

If a linked-to file is encountered again by tar while creating the same archive, an entire
second copy of it will be stored. (This might be considered a bug.)

So, for portable archives, do not archive symbolic links as such, and use ‘--dereference’
(‘-h’): many systems do not support symbolic links, and moreover, your distribution might
be unusable if it contains unresolved symbolic links.

6.6.3 Old V7 and POSIX Archives

GNU tar implements an early draft of the POSIX 1003.1 ustar standard which is different
from the final standard. Adding support for the new changes in a backward-compatible
fashion is not trivial.

Certain old versions of tar cannot handle additional information recorded by newer tar
programs. To create an archive in V7 format (not ANSI), which can be read by these
old versions, specify the ‘--old-archive’ (‘-o’) option in conjunction with the ‘--create’
(‘-c’). tar also accepts ‘--portability’ for this option. When you specify it, tar leaves

Chapter 6: Being Even More Careful 74

out information about directories, pipes, fifos, contiguous files, and device files, and specifies
file ownership by group and user IDs instead of group and user names.

When updating an archive, do not use ‘--old-archive’ (‘-o’) unless the archive was
created with using this option.

In most cases, a new format archive can be read by an old tar program without serious
trouble, so this option should seldom be needed. On the other hand, most modern tars are
able to read old format archives, so it might be safer for you to always use ‘--old-archive’
(‘-o’) for your distributions.

6.6.4 Checksumming Problems

SunOS and HP-UX tar fail to accept archives created using GNU tar and containing
non-ASCII file names, because they use signed checksums, while GNU tar uses unsigned
checksums while creating archives, as per POSIX standards. On reading, GNU tar com-
putes both checksums and accept any. It is somewhat worrying that a lot of people may go
around doing backup of their files using faulty (or at least non-standard) software, not learn-
ing about it until it’s time to restore their missing files with an incompatible file extractor,
or vice versa.

GNU tar is supposed to compute both checksums, signed and unsigned, and accept any.
However, 1.11.2 has a bug by which signed checksums are incorrectly initialized, so they do
not work. This is corrected in the subsequent GNU tar versions. However, GNU tar has
not been modified to produce incorrect archives to be read by buggy tar’s.

I’ve been told that when Sun first imported tar on their system, they recompiled it
without realizing that the checksums were computed differently, because of a change in the
default signing of char’s in their compiler. So they started computing checksums wrongly,
and stayed compatible with themselves afterwards. It now falls on the shoulders of SunOS
and HP-UX users to get a tar able to read the good archives they receive.

6.7 Write Protection

All tapes and disks can be write protected, to protect data on them from being changed.
Once an archive is written, you should write protect the media to prevent the archive from
being accidently overwritten or deleted. (This will protect the archive from being changed
with a tape or floppy drive—it will not protect it from magnet fields or other physical
hazards).

The write protection device itself is usually an integral part of the physical media, and
can be a two position (write enabled/write disabled) switch, a notch which can be popped
out or covered, a ring which can be removed from the center of a tape reel, or some other
changeable feature.

Chapter 7: Controlling the Archive Format 75

7 Controlling the Archive Format

7.1 Handling of file attributes

(This message will disappear, once this node revised.)

Handling of file attributes

--atime-preserve
Do not change access times on dumped files.

-m
--modification-time

Do not extract file modified time.

When this option is used, tar leaves the modification times of the files it extracts
as the time when the files were extracted, instead of setting it to the time
recorded in the archive.

This option is meaningless with ‘--list’ (‘-t’).

--same-owner
Create extracted files with the same ownership.

-p
--same-permissions
--preserve-permissions

Extract all protection information.

This option causes tar to set the modes (access permissions) of extracted files
exactly as recorded in the archive. If this option is not used, the current umask
setting limits the permissions on extracted files.

This option is meaningless with ‘--list’ (‘-t’).

-s
--same-order
--preserve-order

Sort names to extract to match archive.

This option tells tar that the list of file names to be listed or extracted is sorted
in the same order as the files in the archive. This allows a large list of names to
be used, even on a small machine that would not otherwise be able to hold all
the names in memory at the same time. Such a sorted list can easily be created
by running ‘tar -t’ on the archive and editing its output.

This option is probably never needed on modern computer systems.

--preserve
Same as both ‘--same-permissions’ (‘-p’) and ‘--same-order’ (‘-s’).

The ‘--preserve’ option has no equivalent short option name. It is equivalent
to ‘--same-permissions’ (‘-p’) plus ‘--same-order’ (‘-s’).

Chapter 7: Controlling the Archive Format 76

7.2 Archive format selection

(This message will disappear, once this node revised.)
Archive format selection

-V name

--label=name
Create archive with volume name name.
This option causes tar to write out a volume header at the beginning of the
archive. If ‘--multi-volume’ (‘-M’) is used, each volume of the archive will
have a volume header of ‘name Volume n ’, where n is 1 for the first volume, 2
for the next, and so on.

-z
--gzip
--ungzip Filter the archive through gzip.

This option works on physical devices (tape drives, etc.) and remote files as well
as on normal files; data to or from such devices or remote files is reblocked by
another copy of the tar program to enforce the specified (or default) block size.
The default compression parameters are used; if you need to override them,
avoid the ‘--gzip’ (‘-z’) option and run gzip explicitly. (Or set the ‘GZIP’
environment variable.)
If the ‘--gzip’ (‘-z’) option is given twice, or the ‘--compress-blocks’ option
is used, tar will pad the archive out to the next block boundary (
FIXME: pxref Blocking
). This may be useful with some devices that require that all write operations
be a multiple of a certain size.
The ‘--gzip’ (‘-z’) option does not work with the ‘--multi-volume’ (‘-M’)
option, or with the ‘--update’ (‘-u’), ‘--append’ (‘-r’), ‘--concatenate’ (‘-A’),
or ‘--delete’ commands.
It is not exact to say that GNU tar is to work in concert with gzip in a way
similar to zip, say. Surely, it is possible that tar and gzip be done with a
single call, like in:

tar cfz archive.tar.gz subdir

to save all of ‘subdir’ into a gzip’ed archive. Later you can do:
tar xfz archive.tar.gz

to explode and unpack.
The difference is that the whole archive is compressed. With zip, archive
members are archived individually. tar’s method yields better compression.
On the other hand, one can view the contents of a zip archive without having
to decompress it. As for the tar and gzip tandem, you need to decompress the
archive to see its contents. However, this may be done without needing disk
space, by using pipes internally:

tar tfz archive.tar.gz

About corrupted compressed archives: gzip’ed files have no redundancy, for
maximum compression. The adaptive nature of the compression scheme means

Chapter 7: Controlling the Archive Format 77

that the compression tables are implicitly spread all over the archive. If you
lose a few blocks, the dynamic construction of the compression tables becomes
unsychronized, and there is little chance that you could recover later in the
archive.

There are pending suggestions for having a per-volume or per-file compression
in GNU tar. This would allow for viewing the contents without decompres-
sion, and for resynchronizing decompression at every volume or file, in case of
corrupted archives. Doing so, we might loose some compressibility. But this
would have make recovering easier. So, there are pros and cons. We’ll see!

-Z
--compress
--uncompress

Filter the archive through compress. Otherwise like ‘--gzip’ (‘-z’).

--use-compress-program=prog
Filter through prog (must accept ‘-d’).

7.3 Using Less Space through Compression

7.3.1 Creating and Reading Compressed Archives

(This message will disappear, once this node revised.)

‘--compress’ (‘-Z’) indicates an archive stored in compressed format. The ‘--compress’
(‘-Z’) option is useful in saving time over networks and space in pipes, and when storage
space is at a premium. ‘--compress’ (‘-Z’) causes tar to compress when writing the archive,
or to uncompress when reading the archive.

To perform compression and uncompression on the archive, tar runs the compress
utility. tar uses the default compression parameters; if you need to override them, avoid
the ‘--compress’ (‘-Z’) option and run the compress utility explicitly. It is useful to be
able to call the compress utility from within tar because the compress utility by itself
cannot access remote tape drives.

The ‘--compress’ (‘-Z’) option will not work in conjunction with the ‘--multi-volume’
(‘-M’) option or the ‘--append’ (‘-r’), ‘--update’ (‘-u’), ‘--append’ (‘-r’) and ‘--delete’
operations.

FIXME: xref Modifying

, for more information on these operations.

If there is no compress utility available, tar will report an error.

‘--compress-blocks’ is like ‘--compress’ (‘-Z’), but when used in conjunction with
‘--create’ (‘-c’) also causes tar to pad the last block of the archive out to the next
block boundary as it is written. This is useful with certain devices which require all write
operations be a multiple of a specific size.

Please Note: The compress program may be covered by a patent, and therefore
we recommend you stop using it. We hope to have a different compress program
in the future. We may change the name of this option at that time.

Chapter 7: Controlling the Archive Format 78

‘--compress’
‘--uncompress’
‘-z’
‘-Z’ When this option is specified, tar will compress (when writing an archive),

or uncompress (when reading an archive). Used in conjunction with the
‘--create’ (‘-c’), ‘--extract’ (‘-x’), ‘--list’ (‘-t’) and ‘--compare’ (‘-d’)
operations.

‘--compress-block’
‘-z -z’ Acts like ‘--compress’ (‘-Z’), but pads the archive out to the next block bound-

ary as it is written when used in conjunction with the ‘--create’ (‘-c’) opera-
tion.

FIXME: why not use -Z instead of -z -z ?

7.3.2 Dealing with Compressed Archives

(This message will disappear, once this node revised.)
You can have archives be compressed by using the ‘--gzip’ (‘-z’) option. This will

arrange for tar to use the gzip program to be used to compress or uncompress the archive
wren writing or reading it.

To use the older, obsolete, compress program, use the ‘--compress’ (‘-Z’) option. The
GNU Project recommends you not use compress, because there is a patent covering the
algorithm it uses. Merely by running compress you could be sued for patent infringment.

When using either ‘--gzip’ (‘-z’) or ‘--compress’ (‘-Z’), tar does not do blocking (
FIXME: pxref Blocking

) correctly. Use ‘--gzip-block’ or ‘--compress-blocks’ instead when using real tape
drives.

7.3.3 Archiving Sparse Files

(This message will disappear, once this node revised.)
A file is sparse if it contains blocks of zeros whose existance is recorded, but that have

no space allocated on disk. When you specify the ‘--sparse’ (‘-S’) option in conjunction
with the ‘--create’ (‘-c’) operation, tar tests all files for sparseness while archiving. If
tar finds a file to be sparse, it uses a sparse representation of the file in the archive.
FIXME: xref Creating Archives

, for more information about creating archives.
‘--sparse’ (‘-S’) is useful when archiving files, such as dbm files, likely to contain many

nulls. This option dramatically decreases the amount of space needed to store such an
archive.

Please Note: Always use ‘--sparse’ (‘-S’) when performing file system back-
ups, to avoid archiving the expanded forms of files stored sparsely in the system.
Even if your system has no no sparse files currently, some may be created in
the future. If you use ‘--sparse’ (‘-S’) while making file system backups as a
matter of course, you can be assured the archive will always take no more space
on the media than the files take on disk (otherwise, archiving a disk filled with
sparse files might take hundreds of tapes).

Chapter 7: Controlling the Archive Format 79

FIXME: xref incremental when node name is set.
tar ignores the ‘--sparse’ (‘-S’) option when reading an archive.

‘--sparse’
‘-S’ Files stored sparsely in the file system are represented sparsely in the archive.

Use in conjunction with write operations.

7.4 Special Options for Archiving

(This message will disappear, once this node revised.)
To give the archive a name which will be recorded in it, use the ‘--label=archive-

label ’ (‘-V archive-label ’) option. This will write a special record identifying volume-
label as the name of the archive to the front of the archive which will be displayed when
the archive is listed with ‘--list’ (‘-t’). If you are creating a multi-volume archive with
‘--multi-volume’ (‘-M’) (
FIXME: pxref Using Multiple Tapes

), then the volume label will have ‘Volume nnn ’ appended to the name you give, where
nnn is the number of the volume of the archive. (If you use the ‘--label=archive-label ’
(‘-V archive-label ’) option when reading an archive, it checks to make sure the label on
the tape matches the one you give.
FIXME: xref Special Options for Archiving

.)
Files in the filesystem occasionally have “holes.” A hole in a file is a section of the

file’s contents which was never written. The contents of a hole read as all zeros. On many
operating systems, actualdisk storage is not allocated for holes, but they are counted in
the length of the file. If you archive such a file, tar could create an archive longer than
the original. To have tar attempt to recognize the holes in a file, use ‘--sparse’ (‘-S’).
When you use the ‘--sparse’ (‘-S’) option, then, for any file using less disk space than
would be expected from its length, tar searches the file for consecutive stretches of zeros.
It then records in the archive for the file where the consecutive stretches of zeros are, and
only archives the “real contents” of the file. On extraction (using ‘--sparse’ (‘-S’) is not
needed on extraction) any such files have hols created wherever the continuous stretches of
zeros were found. Thus, if you use ‘--sparse’ (‘-S’), tar archives won’t take more space
than the original.

When tar reads files, this causes them to have the access times updated. To have tar
attempt to set the access times back to what they were before they were read, use the
‘--atime-preserve’ option. This doesn’t work for files that you don’t own, unless you’re
root, and it doesn’t interact with incremental dumps nicely (
FIXME: pxref Making Backups

), but it is good enough for some purposes.

7.5 The Structure of an Archive

(This message will disappear, once this node revised.)
While an archive may contain many files, the archive itself is a single ordinary file. Like

any other file, an archive file can be written to a storage device such as a tape or disk, sent

Chapter 7: Controlling the Archive Format 80

through a pipe or over a network, saved on the active file system, or even stored in another
archive. An archive file is not easy to read or manipulate without using the tar utility or
Tar mode in Emacs.

Physically, an archive consists of a series of file entries terminated by an end-of-archive
entry, which consists of 512 zero bytes. A file entry usually describes one of the files in the
archive (an archive member), and consists of a file header and the contents of the file. File
headers contain file names and statistics, checksum information which tar uses to detect
file corruption, and information about file types.

More than archive member can have the same file name. One way this situation can
occur is if more than one version of a file has been stored in the archive. For information
about adding new versions of a file to an archive,

FIXME: pxref Modifying

.

In addition to entries describing archive members, an archive may contain entries which
tar itself uses to store information.

FIXME: xref Archive Label

, for an example of such an archive entry.

7.6 Operation mode modifiers

(This message will disappear, once this node revised.)

Operation mode modifiers

-W
--verify Attempt to verify the archive after writing.

This option causes tar to verify the archive after writing it. Each volume is
checked after it is written, and any discrepancies are recorded on the standard
error output.
Verification requires that the archive be on a back-space-able medium. This
means pipes, some cartridge tape drives, and some other devices cannot be
verified.

--remove-files
Remove files after adding them to the archive.

-k
--keep-old-files

Do not overwrite existing files from archive.
The ‘--keep-old-files’ (‘-k’) option prevents tar from over-writing existing
files with files with the same name from the archive.
The ‘--keep-old-files’ (‘-k’) option is meaningless with ‘--list’ (‘-t’).

-S
--sparse Handle sparse files efficiently.

This option causes all files to be put in the archive to be tested for sparseness,
and handled specially if they are. The ‘--sparse’ (‘-S’) option is useful when

Chapter 7: Controlling the Archive Format 81

many dbm files, for example, are being backed up. Using this option dramatically
decreases the amount of space needed to store such a file.
In later versions, this option may be removed, and the testing and treatment of
sparse files may be done automatically with any special GNU options. For now,
it is an option needing to be specified on the command line with the creation
or updating of an archive.

-O
--to-stdout

Extract files to standard output.
When this option is used, instead of creating the files specified, tar writes the
contents of the files extracted to its standard output. This may be useful if you
are only extracting the files in order to send them through a pipe.
This option is meaningless with ‘--list’ (‘-t’).

--ignore-failed-read
Do not exit with non-zero on unreadable files.

FIXME: This section needs to be written
To come: using Unix file linking capability to recreate directory structures—linking files

into one subdirectory and then tarring that directory.
to come: nice hairy example using absolute-names, newer, etc.
Piping one tar to another is an easy way to copy a directory’s contents from one disk to

another, while preserving the dates, modes, owners and link-structure of all the files therein.
cd sourcedirectory; tar cf - . | (cd targetdir; tar xf -)

or
FIXME: the following using standard input/output correct??

cd sourcedirectory; tar --create --file=- . | (cd targetdir; tar --extract --file=-)

Archive files can be used for transporting a group of files from one system to another:
put all relevant files into an archive on one computer system, transfer the archive to another,
and extract the contents there. The basic transfer medium might be magnetic tape, Internet
FTP, or even electronic mail (though you must encode the archive with uuencode in order
to transport it properly by mail). Both machines do not have to use the same operating
system, as long as they both support the tar program.
FIXME: mention uuencode on a paragraph of its own
FIXME: end construction

Chapter 8: Tapes and Other Archive Media 82

8 Tapes and Other Archive Media

(This message will disappear, once this node revised.)
A few special cases about tape handling warrant more detailed description. These special

cases are discussed below.
Many complexities surround the use of tar on tape drives. Since the creation and

manipulation of archives located on magnetic tape was the original purpose of tar, it
contains many features making such manipulation easier.

Archives are usually written on dismountable media—tape cartridges, mag tapes, or
floppy disks.

The amount of data a tape or disk holds depends not only on its size, but also on how it
is formatted. A 2400 foot long reel of mag tape holds 40 megabytes of data when formated
at 1600 bits per inch. The physically smaller EXABYTE tape cartridge holds 2.3 gigabytes.

Magnetic media are re-usable—once the archive on a tape is no longer needed, the
archive can be erased and the tape or disk used over. Media quality does deteriorate with
use, however. Most tapes or disks should be disgarded when they begin to produce data
errors. EXABYTE tape cartridges should be disgarded when they generate an error count
(number of non-usable bits) of more than 10k.

Magnetic media are written and erased using magnetic fields, and should be protected
from such fields to avoid damage to stored data. Sticking a floppy disk to a filing cabinet
using a magnet is probably not a good idea.

8.1 Device selection and switching

(This message will disappear, once this node revised.)

-f [hostname:]file
--file=[hostname:]file

Use archive file or device file on hostname.
This option is used to specify the file name of the archive tar works on.
If the file name is ‘-’, tar reads the archive from standard input (when listing
or extracting), or writes it to standard output (when creating). If the ‘-’ file
name is given when updating an archive, tar will read the original archive from
its standard input, and will write the entire new archive to its standard output.
If the file name contains a ‘:’, it is interpreted as ‘hostname:filename’. If the
hostname contains an at sign (@), it is treated as ‘user@hostname:filename’.
In either case, tar will invoke the command rsh (or remsh) to start up an
‘/etc/rmt’ on the remote machine. If you give an alternate login name, it will
be given to the rsh. Naturally, the remote machine must have an executable
‘/etc/rmt’. This program is free software from the University of California, and
a copy of the source code can be found with the sources for tar; it’s compiled
and installed by default.
If this option is not given, but the environment variable TAPE is set, its value
is used; otherwise, old versions of tar used a default archive name (which was
picked when tar was compiled). The default is normally set up to be the first
tape drive or other transportable I/O medium on the system.

Chapter 8: Tapes and Other Archive Media 83

Starting with version 1.11.5, GNU tar uses standard input and standard output
as the default device, and I will not try anymore supporting automatic device
detection at installation time. This was failing really in too many cases, it was
hopeless. This is now completely left to the installer to override standard input
and standard output for default device, if this seems preferrable to him/her.
Further, I think most actual usages of tar are done with pipes or disks, not
really tapes, cartridges or diskettes.

Some users think that using standard input and output is running after trouble.
This could lead to a nasty surprise on your screen if you forget to specify an
output file name—especially if you are going through a network or terminal
server capable of buffering large amounts of output. We had so many bug
reports in that area of configuring default tapes automatically, and so many
contradicting requests, that we finally consider the problem to be portably
intractable. We could of course use something like ‘/dev/tape’ as a default,
but this is also running after various kind of trouble, going from hung processes
to accidental destruction of real tapes. After having seen all this mess, using
standard input and output as a default really sounds like the only clean choice
left, and a very useful one too.

GNU tar reads and writes archive in blocks, I suspect this is the main reason
why block devices are preferred over character devices. Most probably, block
devices are more efficient too. The installer could also check for ‘DEFTAPE’ in
‘<sys/mtio.h>’.

--force-local
Archive file is local even if it contains a colon.

--rsh-command=command
Use remote command instead of rsh. This option exists so that people who
use something other than the standard rsh (e.g., a Kerberized rsh) can access
a remote device.

When this command is not used, the shell command found when the tar pro-
gram was installed is used instead. This is the first found of ‘/usr/ucb/rsh’,
‘/usr/bin/remsh’, ‘/usr/bin/rsh’, ‘/usr/bsd/rsh’ or ‘/usr/bin/nsh’. The
installer may have overriden this by defining the environment variable RSH at
installation time.

-[0-7][lmh]
Specify drive and density.

-M
--multi-volume

Create/list/extract multi-volume archive.

This option causes tar to write a multi-volume archive—one that may be larger
than will fit on the medium used to hold it.

FIXME: xref Multi

.

Chapter 8: Tapes and Other Archive Media 84

-L num

--tape-length=num
Change tape after writing num x 1024 bytes.
This option might be useful when your tape drivers do not properly detect end
of physical tapes. By being slightly conservative on the maximum tape length,
you might avoid the problem entirely.

-F file

--info-script=file
--new-volume-script=file

Execute ‘file’ at end of each tape. This implies ‘--multi-volume’ (‘-M’).

The Remote Tape Server
In order to access the tape drive on a remote machine, tar uses the remote tape server

written at the University of California at Berkeley. The remote tape server must be installed
as ‘/etc/rmt’ on any machine whose tape drive you want to use. tar calls ‘/etc/rmt’ by
running an rsh or remsh to the remote machine, optionally using a different login name if
one is supplied.

A copy of the source for the remote tape server is provided. It is Copyright c© 1983 by
the Regents of the University of California, but can be freely distributed. Instructions for
compiling and installing it are included in the ‘Makefile’.

Unless you use the [No value for “absolue-names”] option, GNU tar will not allow you
to create an archive that contains absolute file names (a file name beginning with ‘/’.) If
you try, tar will automatically remove the leading ‘/’ from the file names it stores in the
archive. It will also type a warning message telling you what it is doing.

When reading an archive that was created with a different tar program, GNU tar
automatically extracts entries in the archive which have absolute file names as if the file
names were not absolute. This is an important feature. A visitor here once gave a tar
tape to an operator to restore; the operator used Sun tar instead of GNU tar, and the
result was that it replaced large portions of our ‘/bin’ and friends with versions from the
tape; needless to say, we were unhappy about having to recover the file system from backup
tapes.

For example, if the archive contained a file ‘/usr/bin/computoy’, GNU tar would ex-
tract the file to ‘usr/bin/computoy’, relative to the current directory. If you want to extract
the files in an archive to the same absolute names that they had when the archive was cre-
ated, you should do a ‘cd /’ before extracting the files from the archive, or you should either
use the ‘--absolute-names’ (‘-P’) option, or use the command ‘tar -C / ...’.

Some versions of Unix (Ultrix 3.1 is know to have this problem), can claim that a short
write near the end of a tape succeeded, when it actually failed. This will result in the -M
option not working correctly. The best workaround at the moment is to use a significantly
larger blocksize than the default 20.

In order to update an archive, tar must be able to backspace the archive in order to
reread or rewrite a block that was just read (or written). This is currently possible only
on two kinds of files: normal disk files (or any other file that can be backspaced with
‘lseek’), and industry-standard 9-track magnetic tape (or any other kind of tape that can
be backspaced with the MTIOCTOP ioctl.

Chapter 8: Tapes and Other Archive Media 85

This means that the ‘--append’ (‘-r’), ‘--update’ (‘-u’), ‘--concatenate’ (‘-A’), and
‘--delete’ commands will not work on any other kind of file. Some media simply cannot
be backspaced, which means these commands and options will never be able to work on
them. These non-backspacing media include pipes and cartridge tape drives.

Some other media can be backspaced, and tar will work on them once tar is modified
to do so.

Archives created with the ‘--multi-volume’ (‘-M’), ‘--label=archive-label ’ (‘-V
archive-label ’), and ‘--incremental’ (‘-G’) options may not be readable by other
version of tar. In particular, restoring a file that was split over a volume boundary will
require some careful work with dd, if it can be done at all. Other versions of tar may also
create an empty file whose name is that of the volume header. Some versions of tar may
create normal files instead of directories archived with the ‘--incremental’ (‘-G’) option.

Some Common Problems and their Solutions:
errors from system:
permission denied
no such file or directory
not owner

errors from tar:
directory checksum error
header format error

errors from media/system:
i/o error
device busy

8.2 Blocking

(This message will disappear, once this node revised.)
When writing to tapes, tar writes the contents of the archive in chunks known as blocks.

To change the default blocksize, use the ‘--block-size=512-size ’ (‘-b 512-size ’) option.
Each block will then be composed of size records. (Each tar record is 512 bytes.
FIXME: xref Archive Format

.) Each file written to the archive uses at least one full block. As a result, using a larger
block size can result in more wasted space for small files. On the other hand, a larger block
size can ofter be read and written much more efficiently.

Further complicating the problem is that some tape drives ignore the blocking entirely.
For these, a larger block size can still improve performance (because the software layers
above the tape drive still honor the blocking), but not as dramatically as on tape drives
that honor blocking.

Wher reading an archive, tar can usually figure out the block size on itself. When this
is the case, and a non-standard block size was used when the archive was created, tar
will print a message about a non-standard blocking factor, and then operate normally. On
some tape devices, however, tar cannot figure out the block size itself. On most of those,
you can specify a blocking factor (with ‘--block-size=512-size ’ (‘-b 512-size ’)) larger

Chapter 8: Tapes and Other Archive Media 86

than the actual blocking factor, and then use the ‘--read-full-blocks’ (‘-B’) option. (If
you specify a blocking factor with ‘--block-size=512-size ’ (‘-b 512-size ’) and don’t
use the ‘--read-full-blocks’ (‘-B’) option, then tar will not attempt to figure out the
blocking size itself.) On some devices, you must always specify the block size exactly with
‘--block-size=512-size ’ (‘-b 512-size ’) when reading, because tar cannot figure it out.
In any case, use ‘--list’ (‘-t’) before doing any extractions to see whether tar is reading
the archive correctly.

If you use a blocking factor larger than 20, older tar programs might not be able to read
the archive, so we recommend this as a limit to use in practice. GNU tar, however, will
support arbitrarily large block sizes, limited only by the amount of virtual memory or the
physical characteristics of the tape device.

If you are writing a compressed archive to tape with ‘--compress’ (‘-Z’) or ‘--gzip’
(‘-z’) (

FIXME: pxref Input and Output

), tar will not block the archive correctly. This doesn’t matter if you are writing the
archive to a normal file or through a pipe, but if you are writing it to a tape drive, then
this causes problems. Use ‘--compress-blocks’ or ‘--gzip-block’ instead, to cause tar
to arrange to have blocking work correctly.

8.2.1 Format Variations

(This message will disappear, once this node revised.)

Format parameters specify how an archive is written on the archive media. The best
choice of format parameters will vary depending on the type and number of files being
archived, and on the media used to store the archive.

To specify format parameters when accessing or creating an archive, you can use the
options described in the following sections. If you do not specify any format parameters,
tar uses default parameters. You cannot modify a compressed archive. If you create an
archive with the ‘--block-size=512-size ’ (‘-b 512-size ’) option specified (

FIXME: pxref Blocking
Factor

), you must specify that block-size when operating on the archive.

FIXME: xref Matching Format Parameters

, for other examples of format parameter considerations.

8.2.2 The Blocking Factor of an Archive

(This message will disappear, once this node revised.)

The data in an archive is grouped into records, which are 512 bytes. Records are read and
written in whole number multiples called blocks. The number of records in a block (ie. the
size of a block in units of 512 bytes) is called the blocking factor. The ‘--block-size=512-
size ’ (‘-b 512-size ’) option specifies the blocking factor of an archive. The default block-
ing factor is typically 20 (ie. 10240 bytes), but can be specified at installation. To find out
the blocking factor of an existing archive, use ‘tar --list --file=archive-name ’. This
may not work on some devices.

Chapter 8: Tapes and Other Archive Media 87

Blocks are seperated by gaps, which waste space on the archive media. If you are
archiving on magnetic tape, using a larger blocking factor (and therefore larger blocks)
provides faster throughput and allows you to fit more data on a tape (because there are
fewer gaps). If you are archiving on cartridge, a very large blocking factor (say 126 or more)
greatly increases performance. A smaller blocking factor, on the other hand, may be usefull
when archiving small files, to avoid archiving lots of nulls as tar fills out the archive to the
end of the block. In general, the ideal block size depends on the size of the inter-block gaps
on the tape you are using, and the average size of the files you are archiving.
FIXME: xref Creating
Archives

, for information on writing archives.
FIXME: need example of using a cartridge with blocksize=126 or more

Archives with blocking factors larger than 20 cannot be read by very old versions of tar,
or by some newer versions of tar running on old machines with small address spaces. With
GNU tar, the blocking factor of an archive is limited only by the maximum block size of
the device containing the archive, or by the amount of available virtual memory.

If you use a non-default blocking factor when you create an archive, you must specify the
same blocking factor when you modify that archive. Some archive devices will also require
you to specify the blocking factor when reading that archive, however this is not typically
the case. Usually, you can use ‘--list’ (‘-t’) without specifying a blocking factor—tar
reports a non-default block size and then lists the archive members as it would normally.
To extract files from an archive with a non-standard blocking factor (particularly if you’re
not sure what the blocking factor is), you can usually use the ‘--read-full-blocks’ (‘-B’)
option while specifying a blocking factor larger then the blocking factor of the archive (ie.
‘tar --extract --read-full-blocks --block-size=300’.
FIXME: xref Listing Contents

for more information on the ‘--list’ (‘-t’) operation.
FIXME: xref read-full-blocks

for a more detailed explanation of that option.

‘--block-size=number ’
‘-b number ’

Specifies the blocking factor of an archive. Can be used with any operation,
but is usually not necessary with ‘--list’ (‘-t’).

Device blocking

-b blocks

--block-size=blocks
Set block size to blocks ∗ 512 bytes.
This option is used to specify a blocking factor for the archive. When reading
or writing the archive, tar, will do reads and writes of the archive in blocks of
block ∗ 512 bytes.
The default blocking factor is set when tar is compiled, and is typically 20.
Blocking factors larger than 20 cannot be read by very old versions of tar, or by
some newer versions of tar running on old machines with small address spaces.

Chapter 8: Tapes and Other Archive Media 88

With a magnetic tape, larger blocks give faster throughput and fit more data
on a tape (because there are fewer inter-record gaps). If the archive is in a disk
file or a pipe, you may want to specify a smaller blocking factor, since a large
one will result in a large number of null bytes at the end of the archive.
When writing cartridge or other streaming tapes, a much larger blocking factor
(say 126 or more) will greatly increase performance. However, you must specify
the same blocking factor when reading or updating the archive.
With GNU tar the blocking factor is limited only by the maximum block size of
the device containing the archive, or by the amount of available virtual memory.

--block-compress
Block the output of compression for tapes.

-i
--ignore-zeros

Ignore blocks of zeros in archive (means EOF).
The ‘--ignore-zeros’ (‘-i’) option causes tar to ignore blocks of zeros in the
archive. Normally a block of zeros indicates the end of the archive, but when
reading a damaged archive, or one which was created by cat-ing several archives
together, this option allows tar to read the entire archive. This option is not on
by default because many versions of tar write garbage after the zeroed blocks.
Note that this option causes tar to read to the end of the archive file, which may
sometimes avoid problems when multiple files are stored on a single physical
tape.

-B
--read-full-blocks

Reblock as we read (for reading 4.2BSD pipes).
If ‘--read-full-blocks’ (‘-B’) is used, tar will not panic if an attempt to read
a block from the archive does not return a full block. Instead, tar will keep
reading until it has obtained a full block.
This option is turned on by default when tar is reading an archive from standard
input, or from a remote machine. This is because on BSD Unix systems, a read
of a pipe will return however much happens to be in the pipe, even if it is less
than tar requested. If this option was not used, tar would fail as soon as it
read an incomplete block from the pipe.
This option is also useful with the commands for updating an archive.

Tape blocking
FIXME: Appropriate options should be moved here from elsewhere.

When handling various tapes or cartridges, you have to take care of selecting a proper
blocking, that is, the number of disk blocks you put together as a single tape block on the
tape, without intervening tape gaps. A tape gap is a small landing area on the tape with
no information on it, used for decelerating the tape to a full stop, and for later regaining
the reading or writing speed. When the driver starts reading a tape block, the tape block
has to be read whole without stopping, as a tape gap is needed to stop the tape motion
without loosing information.

Chapter 8: Tapes and Other Archive Media 89

Using higher blocking (putting more disk blocks per tape block) will use the tape more
efficiently as there will be less tape gaps. But reading such tapes may be more difficult for
the system, as more memory will be required to receive at once the whole block. Further, if
there is a reading error on a huge tape block, this is less likely that the system will succeed
in recovering the information. So, blocking should not be too low, nor it should be too
high. tar uses by default a blocking of 20 for historical reasons, and it does not really
matter when reading or writing to disk. Current tape technology would easily accomodate
higher blockings. Sun recommends a blocking of 126 for Exabytes and 96 for DATs. Other
manufacturers may use different recommendations for the same tapes. This might also
depends of the buffering techniques used inside modern tape controllers. Some imposes a
minimum blocking, or a maximum blocking. Others request blocking to be some exponent
of two.

So, there is no fixed rule for blocking. But blocking at read time should ideally be
the same as blocking used at write time. At one place I know, with a wide variety of
equipment, they found it best to use a blocking of 32 to guarantee that their tapes are fully
interchangeable.

I was also told that, for recycled tapes, prior erasure (by the same drive unit that will
be used to create the archives) sometimes lowers the error rates observed at rewriting time.

8.3 Many archives on one tape

FIXME: Appropriate options should be moved here from elsewhere.

Most tape devices have two entries in the ‘/dev’ directory, or entries that come in pairs,
which differ only in the minor number for this device. Let’s take for example ‘/dev/tape’,
which often points to the only or usual tape device of a given system. There might be a
corresponding ‘/dev/nrtape’ or ‘/dev/ntape’. The simpler name is the rewinding version
of the device, while the name having ‘nr’ in it is the no rewinding version of the same
device.

A rewinding tape device will bring back the tape to its beginning point automatically
when this device is opened or closed. Since tar opens the archive file before using it and
closes it afterwards, this means that a simple:

tar cf /dev/tape directory

will reposition the tape to its beginning both prior and after saving directory contents to
it, thus erasing prior tape contents and making it so that any subsequent write operation
will destroy what has just been saved.

So, a rewinding device is normally meant to hold one and only one file. If you want to
put more than one tar archive on a given tape, you will need to avoid using the rewinding
version of the tape device. You will also have to pay special attention to tape positioning.
Errors in positionning may overwrite the valuable data already on your tape. Many people,
burnt by past experiences, will only use rewinding devices and limit themselves to one file
per tape, precisely to avoid the risk of such errors. Be fully aware that writing at the wrong
position on a tape loses all information past this point and most probably until the end of
the tape, and this destroyed information cannot be recovered.

To save directory-1 as a first archive at the beginning of a tape, and leave that tape
ready for a second archive, you should use:

Chapter 8: Tapes and Other Archive Media 90

mt -f /dev/nrtape rewind
tar cf /dev/nrtape directory-1

Tape marks are special magnetic patterns written on the tape media, which are later
recognizable by the reading hardware. These marks are used after each file, when there
are many on a single tape. An empty file (that is to say, two tape marks in a row) signal
the logical end of the tape, after which no file exist. Usually, non-rewinding tape device
drivers will react to the close request issued by tar by first writing two tape marks after
your archive, and by backspacing over one of these. So, if you remove the tape at that time
from the tape drive, it is properly terminated. But if you write another file at the current
position, the second tape mark will be erased by the new information, leaving only one tape
mark between files.

So, you may now save directory-2 as a second archive after the first on the same tape
by issuing the command:

tar cf /dev/nrtape directory-2

and so on for all the archives you want to put on the same tape.

Another usual case is that you do not write all the archives the same day, and you need
to remove and store the tape between two archive sessions. In general, you must remember
how many files are already saved on your tape. Suppose your tape already has 16 files on
it, and that you are ready to write the 17th. You have to take care of skipping the first 16
tape marks before saving directory-17, say, by using these commands:

mt -f /dev/nrtape rewind
mt -f /dev/nrtape fsf 16
tar cf /dev/nrtape directory-17

In all the previous examples, we put aside blocking considerations, but you should do
the proper things for that as well.

FIXME: xref Blocking

.

8.3.1 Tape Positions and Tape Marks

(This message will disappear, once this node revised.)

Just as archives can store more than one file from the file system, tapes can store more
than one archive file. To keep track of where archive files (or any other type of file stored on
tape) begin and end, tape archive devices write magnetic tape marks on the archive media.
Tape drives write one tape mark between files, two at the end of all the file entries.

If you think of data as a series of "0000"’s, and tape marks as "x"’s, a tape might look
like the following:

0000x000000x00000x00x00000xx-------------------------

Tape devices read and write tapes using a read/write tape head—a physical part of the
device which can only access one point on the tape at a time. When you use tar to read
or write archive data from a tape device, the device will begin reading or writing from
wherever on the tape the tape head happens to be, regardless of which archive or what part
of the archive the tape head is on. Before writing an archive, you should make sure that
no data on the tape will be overwritten (unless it is no longer needed). Before reading an

Chapter 8: Tapes and Other Archive Media 91

archive, you should make sure the tape head is at the beginning of the archive you want to
read. (The restore script will find the archive automatically.

FIXME: xref Scripted
Restoration

).

FIXME: xref mt

, for an explanation of the tape moving utility.

If you want to add new archive file entries to a tape, you should advance the tape to
the end of the existing file entries, backspace over the last tape mark, and write the new
archive file. If you were to add two archives to the example above, the tape might look like
the following:

0000x000000x00000x00x00000x000x0000xx----------------

8.3.2 The mt Utility

(This message will disappear, once this node revised.)

FIXME: is it true that this only works on non-block devices? should
FIXME: explain the difference, xref to block-size (fixed or variable).

You can use the mt utility to advance or rewind a tape past a specified number of archive
files on the tape. This will allow you to move to the beginning of an archive before extracting
or reading it, or to the end of all the archives before writing a new one.

FIXME: why isn’t there an "advance ’til you find two tape marks together"?

The syntax of the mt command is:

mt [-f tapename] operation [number]

where tapename is the name of the tape device, number is the number of times an
operation is performed (with a default of one), and operation is one of the following:

FIXME: is there any use for record operations?

eof
weof Writes number tape marks at the current position on the tape.

fsf Moves tape position forward number files.

bsf Moves tape position back number files.

rewind Rewinds the tape. (Ignores number).

offline
rewoff1 Rewinds the tape and takes the tape device off-line. (Ignores number).

status Prints status information about the tape unit.
FIXME: is there a better way to frob the spacing on the list?

If you don’t specify a tapename, mt uses the environment variable TAPE; if TAPE does
not exist, mt uses the device ‘/dev/rmt12’.

mt returns a 0 exit status when the operation(s) were successful, 1 if the command was
unrecognized, and 2 if an operation failed.

Chapter 8: Tapes and Other Archive Media 92

FIXME: new node on how to find an archive?
If you use ‘--extract’ (‘-x’) with the ‘--label=archive-label ’ (‘-V archive-label ’)

option specified, tar will read an archive label (the tape head has to be positioned on it) and
print an error if the archive label doesn’t match the archive-name specified. archive-name
can be any regular expression. If the labels match, tar extracts the archive.
FIXME: xref Archive Label

.
FIXME: xref Matching Format Parameters

.
FIXME: fix cross references

‘tar --list --label’ will cause tar to print the label.
FIXME: program to list all the labels on a tape?

8.4 Using Multiple Tapes

(This message will disappear, once this node revised.)
Often you might want to write a large archive, one larger than will fit on the actual

tape you are using. In such a case, you can run multiple tar commands, but this can be
inconvenient, particularly if you are using options like ‘--exclude=pattern ’ or dumping
entire filesystems. Therefore, tar supports multiple tapes automatically.

Use ‘--multi-volume’ (‘-M’) on the command line, and then tar will, when it reaches
the end of the tape, prompt for another tape, and continue the archive. Each tape will have
an independent archive, and can be read without needing the other. (As an exception to
this, the file that tar was archiving when it ran out of tape will usually be split between the
two archives; in this case you need to extract from the first archive, using ‘--multi-volume’
(‘-M’), and then put in the second tape when prompted, so tar can restore both halves of
the file.)

When prompting for a new tape, tar accepts any of the following responses:

‘?’ Request tar to explain possible responses

‘q’ Request tar to exit immediately.

‘n file name ’
Request tar to write the next volume on the file file name.

‘!’ Request tar to run a subshell.

‘y’ Request tar to begin writing the next volume.

(You should only type ‘y’ after you have changed the tape; otherwise tar will write over
the volume it just finished.)

If you want more elaborate behavior than this, give tar the ‘--info-script=script-
name ’ (‘-F script-name ’) option. The file script-name is expected to be a program (or shell
script) to be run instead of the normal prompting procedure. When the program finishes,
tar will immediately begin writing the next volume. The behavior of the ‘n’ response to
the normal tape-change prompt is not available if you use ‘--info-script=script-name ’
(‘-F script-name ’).

Chapter 8: Tapes and Other Archive Media 93

The method tar uses to detect end of tape is not perfect, and fails on some operating
systems or on some devices. You can use the ‘--tape-length=1024-size ’ (‘-L 1024-

size ’) option if tar can’t detect the end of the tape itself. The size argument should be
the size of the tape.

The volume number used by tar in its tape-change prompt can be changed; if you give
the ‘--volno-file=file-of-number ’ option, then file-of-number should contain a decimal
number. That number will be used as the volume number of the first volume written. When
tar is finished, it will rewrite the file with the now-current volume number. (This does not
change the volume number written on a tape label (
FIXME: pxref Special Options for Archiving

; it only affects the number used in the prompt.)
If you want tar to cycle through a series of tape drives, then you can use the ‘n’ response

to the tape-change prompt. This is error prone, however, and doesn’t work at all with
‘--info-script=script-name ’ (‘-F script-name ’). Therefore, if you give tar multiple
‘--file=archive-name ’ (‘-f archive-name ’) options, then the specified files will be used,
in sequence, as the successive volumes of the archive. Only when the first one in the sequence
needs to be used again will tar prompt for a tape change (or run the info script).

Multi-volume archives
With ‘--multi-volume’ (‘-M’), tar will not abort when it cannot read or write any more

data. Instead, it will ask you to prepare a new volume. If the archive is on a magnetic tape,
you should change tapes now; if the archive is on a floppy disk, you should change disks,
etc.

Each volume of a multi-volume archive is an independent tar archive, complete in itself.
For example, you can list or extract any volume alone; just don’t specify ‘--multi-volume’
(‘-M’). However, if one file in the archive is split across volumes, the only way to extract it
successfully is with a multi-volume extract command ‘--extract --multi-volume’ (‘-xM’)
starting on or before the volume where the file begins.

8.4.1 Archives Longer than One Tape or Disk

(This message will disappear, once this node revised.)
To create an archive that is larger than will fit on a single unit of the media, use the

‘--multi-volume’ (‘-M’) option in conjunction with the ‘--create’ (‘-c’) option (
FIXME: pxref Creating Archives

). A multi-volume archive can be manipulated like any other archive (provided the
‘--multi-volume’ (‘-M’) option is specified), but is stored on more than one tape or disk.

When you specify ‘--multi-volume’ (‘-M’), tar does not report an error when it comes
to the end of an archive volume (when reading), or the end of the media (when writing).
Instead, it prompts you to load a new storage volume. If the archive is on a magnetic tape,
you should change tapes when you see the prompt; if the archive is on a floppy disk, you
should change disks; etc.

You can read each individual volume of a multi-volume archive as if it were an archive
by itself. For example, to list the contents of one volume, use ‘--list’ (‘-t’), without
‘--multi-volume’ (‘-M’) specified. To extract an archive member from one volume (assum-
ing it is described that volume), use ‘--extract’ (‘-x’), again without ‘--multi-volume’
(‘-M’).

Chapter 8: Tapes and Other Archive Media 94

If an archive member is split across volumes (ie. its entry begins on one volume of
the media and ends on another), you need to specify ‘--multi-volume’ (‘-M’) to extract
it successfully. In this case, you should load the volume where the archive member starts,
and use ‘tar --extract --multi-volume’—tar will prompt for later volumes as it needs
them.
FIXME: xref Extracting From Archives

for more information about extracting archives.
‘--info-script=script-name ’ (‘-F script-name ’) is like ‘--multi-volume’ (‘-M’), ex-

cept that tar does not prompt you directly to change media volumes when a volume is
full—instead, tar runs commands you have stored in script-name. This option can be used
to broadcast messages such as ‘Someone please come change my tape’ when performing
unattended backups. When script-name is done, tar will assume that the media has been
changed.
FIXME: There should be a sample program here, including an exit before
FIXME: end.

‘--multi-volume’
‘-M’ Creates a multi-volume archive, when used in conjunction with ‘--create’

(‘-c’). To perform any other operation on a multi-volume archive, specify
‘--multi-volume’ (‘-M’) in conjunction with that operation.

‘--info-script=program-file ’
‘-F program-file ’

Creates a multi-volume archive via a script. Used in conjunction with
‘--create’ (‘-c’).

8.4.2 Tape Files

(This message will disappear, once this node revised.)
When tar writes an archive to tape, it creates a single tape file. If multiple archives are

written to the same tape, one after the other, they each get written as separate tape files.
When extracting, it is necessary to position the tape at the right place before running tar.
To do this, use the mt command. For more information on the mt command and on the
organization of tapes into a sequence of tape files.
FIXME: see ***.

8.5 Including a Label in the Archive

(This message will disappear, once this node revised.)
FIXME: Should the arg to –label be a quoted string?? no - ringo

To avoid problems caused by misplaced paper labels on the archive media, you can in-
clude a label entry—an archive member which contains the name of the archive—in the
archive itself. Use the ‘--label=archive-label ’ (‘-V archive-label ’) option in conjunc-
tion with the ‘--create’ (‘-c’) operation to include a label entry in the archive as it is
being created.

If you create an archive using both ‘--label=archive-label ’ (‘-V archive-label ’)
and ‘--multi-volume’ (‘-M’), each volume of the archive will have an archive label of the

Chapter 8: Tapes and Other Archive Media 95

form ‘archive-label Volume n ’, where n is 1 for the first volume, 2 for the next, and so
on.
FIXME: xref Multi-Volume Archives

, for information on creating multiple volume archives.
If you extract an archive using ‘--label=archive-label ’ (‘-V archive-label ’), tar

will print an error if the archive label doesn’t match the archive-label specified, and will
then not extract the archive. You can include a regular expression in archive-label, in this
case only.
FIXME: why is a reg. exp. useful here? (to limit extraction to a
FIXME: specific group? ie for multi-volume???

To find out an archive’s label entry (or to find out if an archive has a label at all),
use ‘tar --list --verbose’. tar will print the label first, and then print archive member
information, as in the example below:

% tar --verbose --list --file=iamanarchive
V--------- 0/0 0 Mar 7 12:01 1992 iamalabel--Volume Header--
-rw-rw-rw- ringo/user 40 May 21 13:30 1990 iamafilename

‘--label=archive-label ’
‘-V archive-label ’

Includes an archive-label at the beginning of the archive when the archive is
being created, when used in conjunction with the ‘--create’ (‘-c’) option.
Checks to make sure the archive label matches the one specified (when used in
conjunction with the ‘--extract’ (‘-x’) option.

FIXME: was –volume

Chapter 9: Performing Backups and Restoring Files 96

9 Performing Backups and Restoring Files

(This message will disappear, once this node revised.)

.* dumps

. + what are dumps

. + different levels of dumps

. - full dump = dump everything

. - level 1, level 2 dumps etc, -
A level n dump dumps everything changed since the last level
n-1 dump (?)

. + how to use scripts for dumps (ie, the concept)

. - scripts to run after editing backup specs (details)

. + Backup Specs, what is it.

. - how to customize

. - actual text of script [/sp/dump/backup-specs]

. + Problems

. - rsh doesn’t work

. - rtape isn’t installed

. - (others?)

. + the --incremental option of tar

. + tapes

. - write protection

. - types of media

. : different sizes and types, useful for different things

. - files and tape marks
one tape mark between files, two at end.

. - positioning the tape
MT writes two at end of write, backspaces over one when writing again.

To back up a file system means to create archives that contain all the files in that file
system. Those archives can then be used to restore any or all of those files (for instance if
a disk crashes or a file is accidently deleted). File system backups are also called dumps.

9.1 Using tar to Perform Full Dumps

(This message will disappear, once this node revised.)

Full dumps should only be made when no other people or programs are modifying files
in the filesystem. If files are modified while tar is making the backup, they may not be
stored properly in the archive, in which case you won’t be able to restore them if you have
to. (Files not being modified are written with no trouble, and do not corrupt the entire
archive.)

Chapter 9: Performing Backups and Restoring Files 97

You will want to use the ‘--label=archive-label ’ (‘-V archive-label ’) option to
give the archive a volume label, so you can tell what this archive is even if the label falls
off the tape, or anything like that.

Unless the filesystem you are dumping is guaranteed to fit on one volume, you will need
to use the ‘--multi-volume’ (‘-M’) option. Make sure you have enough tapes on hand to
complete the backup.

If you want to dump each filesystem separately you will need to use the
‘--one-file-system’ (‘-l’) option to prevent tar from crossing filesystem boundaries
when storing (sub)directories.

The ‘--incremental’ (‘-G’) option is not needed, since this is a complete copy of ev-
erything in the filesystem, and a full restore from this backup would only be done onto a
completely empty disk.

Unless you are in a hurry, and trust the tar program (and your tapes), it is a good idea
to use the ‘--verify’ (‘-W’) option, to make sure your files really made it onto the dump
properly. This will also detect cases where the file was modified while (or just after) it
was being archived. Not all media (notably cartridge tapes) are capable of being verified,
unfortunately.

‘--listed-incremental=snapshot-file ’ (‘-g snapshot-file ’) take a file name argu-
ment always. If the file doesn’t exist, run a level zero dump, creating the file. If the file
exists, uses that file to see what has changed.

‘--incremental’ (‘-G’)

FIXME: look it up

‘--incremental’ (‘-G’) handle old GNU-format incremental backup.

This option should only be used when creating an incremental backup of a filesystem.
When the ‘--incremental’ (‘-G’) option is used, tar writes, at the beginning of the archive,
an entry for each of the directories that will be operated on. The entry for a directory
includes a list of all the files in the directory at the time the dump was done, and a flag for
each file indicating whether the file is going to be put in the archive. This information is
used when doing a complete incremental restore.

Note that this option causes tar to create a non-standard archive that may not be
readable by non-GNU versions of the tar program.

The ‘--incremental’ (‘-G’) option means the archive is an incremental backup. Its
meaning depends on the command that it modifies.

If the ‘--incremental’ (‘-G’) option is used with ‘--list’ (‘-t’), tar will list, for each
directory in the archive, the list of files in that directory at the time the archive was created.
This information is put out in a format that is not easy for humans to read, but which is
unambiguous for a program: each file name is preceded by either a ‘Y’ if the file is present
in the archive, an ‘N’ if the file is not included in the archive, or a ‘D’ if the file is a directory
(and is included in the archive). Each file name is terminated by a null character. The last
file is followed by an additional null and a newline to indicate the end of the data.

If the ‘--incremental’ (‘-G’) option is used with ‘--extract’ (‘-x’), then when the entry
for a directory is found, all files that currently exist in that directory but are not listed in
the archive are deleted from the directory.

Chapter 9: Performing Backups and Restoring Files 98

This behavior is convenient when you are restoring a damaged file system from a suc-
cession of incremental backups: it restores the entire state of the file system to that which
obtained when the backup was made. If you don’t use ‘--incremental’ (‘-G’), the file
system will probably fill up with files that shouldn’t exist any more.

‘--listed-incremental=snapshot-file ’ (‘-g snapshot-file ’) handle new
GNU-format incremental backup.

‘--listed-incremental=snapshot-file ’ (‘-g snapshot-file ’) acts like
‘--incremental’ (‘-G’), but when used in conjunction with ‘--create’ (‘-c’) will also
cause tar to use the file file, which contains information about the state of the filesystem
at the time of the last backup, to decide which files to include in the archive being created.
That file will then be updated by tar. If the file file does not exist when this option is
specified, tar will create it, and include all appropriate files in the archive.

The file, which is archive independent, contains the date it was last modified and a list
of devices, inode numbers and directory names. tar will archive files with newer mod dates
or inode change times, and directories with an unchanged inode number and device but a
changed directory name. The file is updated after the files to be archived are determined,
but before the new archive is actually created.

9.2 Using tar to Perform Incremental Dumps

(This message will disappear, once this node revised.)

Performing incremental dumps is similar to performing full dumps, although a few more
options will usually be needed.

You will need to use the ‘-N date ’ option to tell tar to only store files that have been
modified since date. date should be the date and time of the last full/incremental dump.

A standard scheme is to do a monthly (full) dump once a month, a weekly dump once
a week of everything since the last monthly and a daily every day of everything since the
last (weekly or monthly) dump.

Here is a copy of the script used to dump the filesystems of the machines here at the Free
Software Foundation. This script is run via cron late at night when people are least likely
to be using the machines. This script dumps several filesystems from several machines at
once (via NFS). The operator is responsible for ensuring that all the machines will be up at
the time the dump happens. If a machine is not running, its files will not be dumped, and
the next day’s incremental dump will not store files that would have gone onto that dump.

#!/bin/csh
Dump thingie
set now = ‘date‘
set then = ‘cat date.nfs.dump‘
/u/hack/bin/tar -c -G -v\
-f /dev/rtu20\
-b 126\
-N "$then"\
-V "Dump from $then to $now"\
/alpha-bits/gp\
/gnu/hack\

Chapter 9: Performing Backups and Restoring Files 99

/hobbes/u\
/spiff/u\
/sugar-bombs/u
echo $now > date.nfs.dump
mt -f /dev/rtu20 rew

Output from this script is stored in a file, for the operator to read later.
This script uses the file ‘date.nfs.dump’ to store the date/time of the last dump.
Since this is a streaming tape drive, no attempt to verify the archive is done. This is

also why the high blocking factor (126) is used. The tape drive must also be rewound by
the mt command after the dump is made.

9.3 The Incremental Options

(This message will disappear, once this node revised.)
‘--incremental’ (‘-G’) is used in conjunction with ‘--create’ (‘-c’), ‘--extract’ (‘-x’)

or ‘--list’ (‘-t’) when backing up and restoring file systems. An archive cannot be ex-
tracted or listed with the ‘--incremental’ (‘-G’) option specified unless it was created with
the option specified. This option should only be used by a script, not by the user, and is
usually disregarded in favor of ‘--listed-incremental=snapshot-file ’ (‘-g snapshot-

file ’), which is described below.
‘--incremental’ (‘-G’) in conjunction with ‘--create’ (‘-c’) causes tar to write, at the

beginning of the archive, an entry for each of the directories that will be archived. The
entry for a directory includes a list of all the files in the directory at the time the archive
was created and a flag for each file indicating whether or not the file is going to be put in
the archive.

Note that this option causes tar to create a non-standard archive that may not be
readable by non-GNU versions of the tar program.

‘--incremental’ (‘-G’) in conjunction with ‘--extract’ (‘-x’) causes tar to read the
lists of directory contents previously stored in the archive, delete files in the file system that
did not exist in their directories when the archive was created, and then extract the files in
the archive.

This behavior is convenient when restoring a damaged file system from a succession of
incremental backups: it restores the entire state of the file system to that which obtained
when the backup was made. If ‘--incremental’ (‘-G’) isn’t specified, the file system will
probably fill up with files that shouldn’t exist any more.

‘--incremental’ (‘-G’) in conjunction with ‘--list’ (‘-t’), causes tar to print, for each
directory in the archive, the list of files in that directory at the time the archive was created.
This information is put out in a format that is not easy for humans to read, but which is
unambiguous for a program: each file name is preceded by either a ‘Y’ if the file is present
in the archive, an ‘N’ if the file is not included in the archive, or a ‘D’ if the file is a directory
(and is included in the archive). Each file name is terminated by a null character. The last
file is followed by an additional null and a newline to indicate the end of the data.

‘--listed-incremental=snapshot-file ’ (‘-g snapshot-file ’) acts like
‘--incremental’ (‘-G’), but when used in conjunction with ‘--create’ (‘-c’) will also
cause tar to use the file snapshot-file, which contains information about the state of the

Chapter 9: Performing Backups and Restoring Files 100

file system at the time of the last backup, to decide which files to include in the archive
being created. That file will then be updated by tar. If the file file does not exist when
this option is specified, tar will create it, and include all appropriate files in the archive.

The file file, which is archive independent, contains the date it was last modified and
a list of devices, inode numbers and directory names. tar will archive files with newer
mod dates or inode change times, and directories with an unchanged inode number and
device but a changed directory name. The file is updated after the files to be archived are
determined, but before the new archive is actually created.
FIXME: this section needs to be written

9.4 Levels of Backups

(This message will disappear, once this node revised.)
An archive containing all the files in the file system is called a full backup or full dump.

You could insure your data by creating a full dump every day. This strategy, however,
would waste a substantial amount of archive media and user time, as unchanged files are
daily re-archived.

It is more efficient to do a full dump only occasionally. To back up files between full
dumps, you can a incremental dump. A level one dump archives all the files that have
changed since the last full dump.

A typical dump strategy would be to perform a full dump once a week, and a level one
dump once a day. This means some versions of files will in fact be archived more than
once, but this dump strategy makes it possible to restore a file system to within one day
of accuracy by only extracting two archives—the last weekly (full) dump and the last daily
(level one) dump. The only information lost would be in files changed or created since the
last daily backup. (Doing dumps more than once a day is usually not worth the trouble).

GNU tar comes with scripts you can use to do full and level-one dumps. Using scripts
(shell programs) to perform backups and restoration is a convenient and reliable alternative
to typing out file name lists and tar commands by hand.

Before you use these scripts, you need to edit the file ‘backup-specs’, which specifies
parameters used by the backup scripts and by the restore script.
FIXME: xref Script Syntax

. Once the backup parameters are set, you can perform backups or restoration by running
the appropriate script.

The name of the restore script is restore. The names of the level one and full backup
scripts are, respectively, level-1 and level-0. The level-0 script also exists under the
name weekly, and the level-1 under the name daily—these additional names can be
changed according to your backup schedule.
FIXME: xref Scripted Restoration

, for more information on running the restoration script.
FIXME: xref Scripted Backups

, for more information on running the backup scripts.
Please Note: The backup scripts and the restoration scripts are designed to be used

together. While it is possible to restore files by hand from an archive which was created

Chapter 9: Performing Backups and Restoring Files 101

using a backup script, and to create an archive by hand which could then be extracted using
the restore script, it is easier to use the scripts.
FIXME: xref incremental
and listed-incremental

, before making such an attempt.
FIXME: shorten node names

9.5 Setting Parameters for Backups and Restoration

(This message will disappear, once this node revised.)
The file ‘backup-specs’ specifies backup parameters for the backup and restoration

scripts provided with tar. You must edit ‘backup-specs’ to fit your system configuration
and schedule before using these scripts.
FIXME: This about backup scripts needs to be written: BS is a shell
FIXME: script thus ... ‘backup-specs’ is in shell script
FIXME: syntax. xref Script Syntax, for an explanation of this syntax.
FIXME:
FIXME: whats a parameter looked at by the backup scripts ... which
FIXME: will be expecting to find ... now syntax ... value is linked to
FIXME: lame ... ‘backup-specs’ specifies the following parameters:

ADMINISTRATOR
The user name of the backup administrator.

BACKUP_HOUR
The hour at which the backups are done. This can be a number from 0 to 23,
or the string ‘now’.

TAPE_FILE
The device tar writes the archive to. This device should be attached to the
host on which the dump scripts are run.
FIXME: examples for all ...

TAPE_STATUS
The command to use to obtain the status of the archive device, including error
count. On some tape drives there may not be such a command; in that case,
simply use ‘TAPE STATUS=false’.

BLOCKING The blocking factor tar will use when writing the dump archive.
FIXME: xref Blocking Factor
.

BACKUP_DIRS
A list of file systems to be dumped. You can include any directory name in the
list—subdirectories on that file system will be included, regardless of how they
may look to other networked machines. Subdirectories on other file systems
will be ignored.
The host name specifies which host to run tar on, and should normally be the
host that actually contains the file system. However, the host machine must

Chapter 9: Performing Backups and Restoring Files 102

have GNU tar installed, and must be able to access the directory containing
the backup scripts and their support files using the same file name that is used
on the machine where the scripts are run (ie. what pwd will print when in that
directory on that machine). If the host that contains the file system does not
have this capability, you can specify another host as long as it can access the
file system through NFS.

BACKUP_FILES
A list of individual files to be dumped. These should be accessible from the
machine on which the backup script is run.
FIXME: same file name, be specific. through nfs ...

9.5.1 An Example Text of ‘Backup-specs’

(This message will disappear, once this node revised.)
The following is the text of ‘backup-specs’ as it appears at FSF:

site-specific parameters for file system backup.

ADMINISTRATOR=friedman
BACKUP_HOUR=1
TAPE_FILE=/dev/nrsmt0
TAPE_STATUS="mts -t $TAPE_FILE"
BLOCKING=124
BACKUP_DIRS="
albert:/fs/fsf
apple-gunkies:/gd
albert:/fs/gd2
albert:/fs/gp
geech:/usr/jla
churchy:/usr/roland
albert:/
albert:/usr
apple-gunkies:/
apple-gunkies:/usr
gnu:/hack
gnu:/u
apple-gunkies:/com/mailer/gnu
apple-gunkies:/com/archive/gnu"

BACKUP_FILES="/com/mailer/aliases /com/mailer/league*[a-z]"

9.5.2 Syntax for ‘Backup-specs’

(This message will disappear, once this node revised.)
‘backup-specs’ is in shell script syntax. The following conventions should be considered

when editing the script:
FIXME: "conventions?"

Chapter 9: Performing Backups and Restoring Files 103

A quoted string is considered to be contiguous, even if it is on more than one line.
Therefore, you cannot include commented-out lines within a multi-line quoted string.
BACKUP FILES and BACKUP DIRS are the two most likely parameters to be multi-line.

A quoted string typically cannot contain wildcards. In ‘backup-specs’, however, the
parameters BACKUP DIRS and BACKUP FILES can contain wildcards.

9.6 Using the Backup Scripts

(This message will disappear, once this node revised.)
The syntax for running a backup script is:

‘script-name’ [time-to-be-run]

where time-to-be-run can be a specific system time, or can be now. If you do not specify
a time, the script runs at the time specified in ‘backup-specs’ (
FIXME: pxref Script Syntax

).
You should start a script with a tape or disk mounted. Once you start a script, it prompts

you for new tapes or disks as it needs them. Media volumes don’t have to correspond to
archive files—a multi-volume archive can be started in the middle of a tape that already
contains the end of another multi-volume archive. The restore script prompts for media
by its archive volume, so to avoid an error message you should keep track of which tape (or
disk) contains which volume of the archive.
FIXME: xref Scripted Restoration

.
FIXME: have file names changed?

The backup scripts write two files on the file system. The first is a record file in
‘/etc/tar-backup/’, which is used by the scripts to store and retrieve information about
which files were dumped. This file is not meant to be read by humans, and should not be
deleted by them.
FIXME: xref incremental and listed-incremental

, for a more detailed explanation of this file.
The second file is a log file containing the names of the file systems and files dumped,

what time the backup was made, and any error messages that were generated, as well as
how much space was left in the media volume after the last volume of the archive was
written. You should check this log file after every backup. The file name is ‘log-mmm-ddd-
yyyy-level-1’ or ‘log-mmm-ddd-yyyy-full’.

The script also prints the name of each system being dumped to the standard output.
FIXME: the section on restore scripts is commented out.
FIXME: a section on non-scripted testore mya be a good idea

9.7 Using the Restore Script

FIXME: subject to change as things develop
(This message will disappear, once this node revised.)

(This node was @ignore’d—merely listing it for now.)

Chapter 9: Performing Backups and Restoring Files 104

To restore files that were archived using a scripted backup, use the restore script. The
syntax for the script is:

where ***** are the file systems to restore from, and ***** is a regular expression which
specifies which files to restore. If you specify –all, the script restores all the files in the file
system.

You should start the restore script with the media containing the first volume of the
archive mounted. The script will prompt for other volumes as they are needed. If the
archive is on tape, you don’t need to rewind the tape to to its beginning—if the tape head
is positioned past the beginning of the archive, the script will rewind the tape as needed.
FIXME: xref Media

, for a discussion of tape positioning.
If you specify ‘--all’ as the files argument, the restore script extracts all the files in

the archived file system into the active file system.
Warning:The script will delete files from the active file system if they were not
in the file system when the archive was made.

FIXME: xref incremental and listed-incremental
, for an explanation of how the script makes that determination.

FIXME: this may be an option, not a given

Chapter 10: Date input formats 105

10 Date input formats

This section describes the textual date representations that GNU programs accept. These
are the strings you, as a user, can supply as arguments to the various programs. The C
interface (via the getdate function) is not described here.

Although the date syntax here can represent any possible time since zero A.D., com-
puter integers are not big enough for such a (comparatively) long time. The earliest date
semantically allowed on Unix systems is midnight, 1 January 1970 UCT.

10.1 General date syntax

A date is a string, possibly empty, containing many items separated by whitespace. The
whitespace may be omitted when no ambiguity arises. The empty string means the begin-
ning of today (i.e., midnight). Order of the items is immaterial. A date string may contain
many flavors of items:
• calendar date items
• time of the day items
• time zone items
• day of the week items
• relative items
• pure numbers.

We describe each of these item types in turn, below.
A few numbers may be written out in words in most contexts. This is most useful for

specifying day of the week items or relative items (see below). Here is the list: ‘first’ for
1, ‘next’ for 2, ‘third’ for 3, ‘fourth’ for 4, ‘fifth’ for 5, ‘sixth’ for 6, ‘seventh’ for 7,
‘eighth’ for 8, ‘ninth’ for 9, ‘tenth’ for 10, ‘eleventh’ for 11 and ‘twelfth’ for 12. Also,
‘last’ means exactly −1.

When a month is written this way, it is still considered to be written numerically, instead
of being “spelled in full”; this changes the allowed strings.

Alphabetic case is completely ignored in dates. Comments may be introduced between
round parentheses, as long as included parentheses are properly nested. Hyphens not fol-
lowed by a digit are currently ignored. Leading zeros on numbers are ignored.

10.2 Calendar date item

A calendar date item specifies a day of the year. It is specified differently, depending on
whether the month is specified numerically or literally. All these strings specify the same
calendar date:

1970-9-17 # ISO 8601.
70-9-17 # This century assumed by default.
70-09-17 # Leading zeros are ignored.
9/17/72 # Common U.S. writing.
24 September 1972
24 Sept 72 # September has a special abbreviation.
24 Sep 72 # Three-letter abbreviations always allowed.

Chapter 10: Date input formats 106

Sep 24, 1972
24-sep-72
24sep72

The year can also be omitted. In this case, the last specified year is used, or the current
year if none. For example:

9/17
sep 17

Here are the rules.
For numeric months, the ISO 8601 format ‘year-month-day ’ is allowed, where year is

any positive number, month is a number between 1 and 12, and day is a number between 1
and 31. If year is less than 100, then 1900 is added to it to force a date in this century. The
construct ‘month/day/year ’, popular in the United States, is accepted. Also ‘month/day ’,
omitting the year.

Literal months may be spelled out in full: ‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’ or ‘December’. Literal months
may be abbreviated to their first three letters, possibly followed by an abbreviating dot. It
is also permitted to write ‘Sept’ instead of ‘September’.

When months are written literally, the calendar date may be given as any of the following:
day month year

day month

month day year

day-month-year

Or, omitting the year:
month day

10.3 Time of day item

A time of day item in date strings specifies the time on a given day. Here are some examples,
all of which represent the same time:

20:02:0
20:02
8:02pm
20:02-0500 # In EST (Eastern U.S. Standard Time).

More generally, the time of the day may be given as ‘hour:minute:second ’, where
hour is a number between 0 and 23, minute is a number between 0 and 59, and second is
a number between 0 and 59. Alternatively, ‘:second ’ can be omitted, in which case it is
taken to be zero.

If the time is followed by ‘am’ or ‘pm’ (or ‘a.m.’ or ‘p.m.’), hour is restricted to run from
1 to 12, and ‘:minute ’ may be omitted (taken to be zero). ‘am’ indicates the first half of
the day, ‘pm’ indicates the second half of the day. In this notation, 12 is the predecessor of
1: midnight is ‘12am’ while noon is ‘12pm’.

The time may alternatively be followed by a timezone correction, expressed as ‘shhmm ’,
where s is ‘+’ or ‘-’, hh is a number of zone hours and mm is a number of zone minutes.
When a timezone correction is given this way, it forces interpretation of the time in UTC,

Chapter 10: Date input formats 107

overriding any previous specification for the timezone or the local timezone. The minute
part of the time of the day may not be elided when a timezone correction is used. This is
the only way to specify a timezone correction by fractional parts of an hour.

Either ‘am’/‘pm’ or a timezone correction may be specified, but not both.

10.4 Timezone item

A timezone item specifies an international timezone, indicated by a small set of letters. Any
included period is ignored. Military timezone designations use a single letter. Currently,
only integral zone hours may be represented in a timezone item. See the previous section
for a finer control over the timezone correction.

Here are many non-daylight-savings-time timezones, indexed by the zone hour value.

+000 ‘GMT’ for Greenwich Mean, ‘UT’ or ‘UTC’ for Universal (Coordinated), ‘WET’ for
Western European and ‘Z’ for militaries.

+100 ‘WAT’ for West Africa and ‘A’ for militaries.

+200 ‘AT’ for Azores and ‘B’ for militaries.

+300 ‘C’ for militaries.

+400 ‘AST’ for Atlantic Standard and ‘D’ for militaries.

+500 ‘E’ for militaries and ‘EST’ for Eastern Standard.

+600 ‘CST’ for Central Standard and ‘F’ for militaries.

+700 ‘G’ for militaries and ‘MST’ for Mountain Standard.

+800 ‘H’ for militaries and ‘PST’ for Pacific Standard.

+900 ‘I’ for militaries and ‘YST’ for Yukon Standard.

+1000 ‘AHST’ for Alaska-Hawaii Standard, ‘CAT’ for Central Alaska, ‘HST’ for Hawaii
Standard and ‘K’ for militaries.

+1100 ‘L’ for militaries and ‘NT’ for Nome.

+1200 ‘IDLW’ for International Date Line West and ‘M’ for militaries.

-100 ‘CET’ for Central European, ‘FWT’ for French Winter, ‘MET’ for Middle European,
‘MEWT’ for Middle European Winter, ‘N’ for militaries and ‘SWT’ for Swedish
Winter.

-200 ‘EET’ for Eastern European, USSR Zone 1 and ‘O’ for militaries.

-300 ‘BT’ for Baghdad, USSR Zone 2 and ‘P’ for militaries.

-400 ‘Q’ for militaries and ‘ZP4’ for USSR Zone 3.

-500 ‘R’ for militaries and ‘ZP5’ for USSR Zone 4.

-600 ‘S’ for militaries and ‘ZP6’ for USSR Zone 5.

-700 ‘T’ for militaries and ‘WAST’ for West Australian Standard.

-800 ‘CCT’ for China Coast, USSR Zone 7 and ‘U’ for militaries.

Chapter 10: Date input formats 108

-900 ‘JST’ for Japan Standard, USSR Zone 8 and ‘V’ for militaries.

-1000 ‘EAST’ for East Australian Standard, ‘GST’ for Guam Standard, USSR Zone 9
and ‘W’ for militaries.

-1100 ‘X’ for militaries.

-1200 ‘IDLE’ for International Date Line East, ‘NZST’ for New Zealand Standard, ‘NZT’
for New Zealand and ‘Y’ for militaries.

Here are many DST timezones, indexed by the zone hour value. Also, by following
a non-DST timezone by the string ‘DST’ in a separate word (that is, separated by some
whitespace), the corresponding DST timezone may be specified.

0 ‘BST’ for British Summer.

+400 ‘ADT’ for Atlantic Daylight.

+500 ‘EDT’ for Eastern Daylight.

+600 ‘CDT’ for Central Daylight.

+700 ‘MDT’ for Mountain Daylight.

+800 ‘PDT’ for Pacific Daylight.

+900 ‘YDT’ for Yukon Daylight.

+1000 ‘HDT’ for Hawaii Daylight.

-100 ‘MEST’ for Middle European Summer, ‘MESZ’ for Middle European Summer,
‘SST’ for Swedish Summer and ‘FST’ for French Summer.

-700 ‘WADT’ for West Australian Daylight.

-1000 ‘EADT’ for Eastern Australian Daylight.

-1200 ‘NZDT’ for New Zealand Daylight.

10.5 Day of week item

The explicit mention of a day of the week will forward the date (only if necessary) to reach
that day of the week in the future.

Days of the week may be spelled out in full: ‘Sunday’, ‘Monday’, ‘Tuesday’, ‘Wednesday’,
‘Thursday’, ‘Friday’ or ‘Saturday’. Days may be abbreviated to their first three letters,
optionally followed by a period. The special abbreviations ‘Tues’ for ‘Tuesday’, ‘Wednes’
for ‘Wednesday’ and ‘Thur’ or ‘Thurs’ for ‘Thursday’ are also allowed.

A number may precede a day of the week item to move forward supplementary weeks.
It is best used in expression like ‘third monday’. In this context, ‘last day ’ or ‘next day ’
is also acceptable; they move one week before or after the day that day by itself would
represent.

A comma following a day of the week item is ignored.

Chapter 10: Date input formats 109

10.6 Relative item in date strings

Relative items adjust a date (or the current date if none) forward or backward. The effect
of relative items accumulate. Here are some examples:

1 year
1 year ago
3 years
2 days

The unit of time displacement may be selected by the string ‘year’ or ‘month’ for moving
by whole years or months. These are fuzzy units, as years and months are not all of equal
duration. More precise units are ‘fortnight’ which is worth 14 days, ‘week’ worth 7 days,
‘day’ worth 24 hours, ‘hour’ worth 60 minutes, ‘minute’ or ‘min’ worth 60 seconds, and
‘second’ or ‘sec’ worth one second. An ‘s’ suffix on these units is accepted and ignored.

The unit of time may be preceded by a multiplier, given as an optionally signed number.
Unsigned numbers are taken as positively signed. No number at all implies 1 for a multi-
plier. Following a relative item by the string ‘ago’ is equivalent to preceding the unit by a
multiplicator with value −1.

The string ‘tomorrow’ is worth one day in the future (equivalent to ‘day’), the string
‘yesterday’ is worth one day in the past (equivalent to ‘day ago’).

The strings ‘now’ or ‘today’ are relative items corresponding to zero-valued time dis-
placement, these strings come from the fact a zero-valued time displacement represents the
current time when not otherwise change by previous items. They may be used to stress
other items, like in ‘12:00 today’. The string ‘this’ also has the meaning of a zero-valued
time displacement, but is preferred in date strings like ‘this thursday’.

When a relative item makes the resulting date to cross the boundary between DST and
non-DST (or vice-versa), the hour is adjusted according to the local time.

10.7 Pure numbers in date strings

The precise intepretation of a pure decimal number is dependent of the context in the date
string.

If the decimal number is of the form yyyymmdd and no other calendar date item (
FIXME: pxref Calendar date item

) appears before it in the date string, then yyyy is read as the year, mm as the month
number and dd as the day of the month, for the specified calendar date.

If the decimal number is of the form hhmm and no other time of day item appears before
it in the date string, then hh is read as the hour of the day and mm as the minute of the
hour, for the specified time of the day. mm can also be omitted.

If both a calendar date and a time of day appear to the left of a number in the date
string, but no relative item, then the number overrides the year.

10.8 Authors of getdate

getdate was originally implemented by Steven M. Bellovin (‘smb@research.att.com’)
while at the University of North Carolina at Chapel Hill. The code was later tweaked by a
couple of people on Usenet, then completely overhauled by Rich $alz (‘rsalz@bbn.com’) and

Chapter 10: Date input formats 110

Jim Berets (‘jberets@bbn.com’) in August, 1990. Various revisions for the GNU system
were made by David MacKenzie, Jim Meyering, and others.

This chapter was originally produced by Francois Pinard (‘pinard@iro.umontreal.ca’)
from the ‘getdate.y’ source code, and then edited by K. Berry (‘kb@cs.umb.edu’).

Chapter 11: Format of tar archives 111

11 Format of tar archives

(This message will disappear, once this node revised.)

11.1 The Standard Format

(This message will disappear, once this node revised.)
A tar archive file contains a series of records. Each record contains RECORDSIZE bytes.

Although this format may be thought of as being on magnetic tape, other media are often
used.

Each file archived is represented by a header record which describes the file, followed
by zero or more records which give the contents of the file. At the end of the archive file
there may be a record filled with binary zeros as an end-of-file marker. A reasonable system
should write a record of zeros at the end, but must not assume that such a record exists
when reading an archive.

The records may be blocked for physical I/O operations. Each block of n records (where
n is set by the ‘--block-size=512-size ’ (‘-b 512-size ’) option to tar) is written with a
single ‘write ()’ operation. On magnetic tapes, the result of such a write is a single tape
record. When writing an archive, the last block of records should be written at the full
size, with records after the zero record containing all zeroes. When reading an archive, a
reasonable system should properly handle an archive whose last block is shorter than the
rest, or which contains garbage records after a zero record.

The header record is defined in C as follows. In the GNU tar distribution, this is part
of file ‘src/tar.h’:

/* Standard Archive Format - Standard TAR - USTAR. */

/* Header block on tape.

We use traditional DP naming conventions here. A "block" is a big chunk
of stuff that we do I/O on. A "record" is a piece of info that we care
about. Typically many "record"s fit into a "block". */

#define RECORDSIZE 512
#define NAMSIZ 100
#define TUNMLEN 32
#define TGNMLEN 32
#define SPARSE_EXT_HDR 21
#define SPARSE_IN_HDR 4

struct sparse
{
char offset[12];
char numbytes[12];

};

union record

Chapter 11: Format of tar archives 112

{
char charptr[RECORDSIZE];

struct header
{
char arch_name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char arch_linkname[NAMSIZ];
char magic[8];
char uname[TUNMLEN];
char gname[TGNMLEN];
char devmajor[8];
char devminor[8];

/* The following fields were added for GNU and are not standard. */

char atime[12];
char ctime[12];
char offset[12];
char longnames[4];
/* Some compilers would insert the pad themselves, so pad was

once autoconfigured. It is simpler to always insert it! */
char pad;
struct sparse sp[SPARSE_IN_HDR];
char isextended;
char realsize[12]; /* true size of the sparse file */

#if 0
char ending_blanks[12]; /* number of nulls at the end of the file,

if any */
#endif

}
header;

struct extended_header
{
struct sparse sp[21];
char isextended;

}
ext_hdr;

};

Chapter 11: Format of tar archives 113

/* The checksum field is filled with this while the checksum is computed. */
#define CHKBLANKS " " /* 8 blanks, no null */

/* The magic field is filled with this value if uname and gname are valid,
marking the archive as being in standard POSIX format (though GNU tar
itself is not POSIX conforming). */

#define TMAGIC "ustar " /* 7 chars and a null */

/* The magic field is filled with this if this is a GNU format dump entry.
But I suspect this is not true anymore. */

#define GNUMAGIC "GNUtar " /* 7 chars and a null */

/* The linkflag defines the type of file. */
#define LF_OLDNORMAL ’\0’ /* normal disk file, Unix compat */
#define LF_NORMAL ’0’ /* normal disk file */
#define LF_LINK ’1’ /* link to previously dumped file */
#define LF_SYMLINK ’2’ /* symbolic link */
#define LF_CHR ’3’ /* character special file */
#define LF_BLK ’4’ /* block special file */
#define LF_DIR ’5’ /* directory */
#define LF_FIFO ’6’ /* FIFO special file */
#define LF_CONTIG ’7’ /* contiguous file */
/* Further link types may be defined later. */

/* Note that the standards committee allows only capital A through
capital Z for user-defined expansion. This means that defining
something as, say ’8’ is a *bad* idea. */

/* This is a dir entry that contains the names of files that were in the
dir at the time the dump was made. */

#define LF_DUMPDIR ’D’

/* Identifies the NEXT file on the tape as having a long linkname. */
#define LF_LONGLINK ’K’

/* Identifies the NEXT file on the tape as having a long name. */
#define LF_LONGNAME ’L’

/* This is the continuation of a file that began on another volume. */
#define LF_MULTIVOL ’M’

/* For storing filenames that didn’t fit in 100 characters. */
#define LF_NAMES ’N’

/* This is for sparse files. */
#define LF_SPARSE ’S’

Chapter 11: Format of tar archives 114

/* This file is a tape/volume header. Ignore it on extraction. */
#define LF_VOLHDR ’V’

#if 0
/* The following two blocks of #define’s are unused in GNU tar. */

/* Bits used in the mode field - values in octal */
#define TSUID 04000 /* set UID on execution */
#define TSGID 02000 /* set GID on execution */
#define TSVTX 01000 /* save text (sticky bit) */

/* File permissions */
#define TUREAD 00400 /* read by owner */
#define TUWRITE 00200 /* write by owner */
#define TUEXEC 00100 /* execute/search by owner */
#define TGREAD 00040 /* read by group */
#define TGWRITE 00020 /* write by group */
#define TGEXEC 00010 /* execute/search by group */
#define TOREAD 00004 /* read by other */
#define TOWRITE 00002 /* write by other */
#define TOEXEC 00001 /* execute/search by other */

#endif

/* End of Standard Archive Format description. */

All characters in header records are represented by using 8-bit characters in the local
variant of ASCII. Each field within the structure is contiguous; that is, there is no padding
used within the structure. Each character on the archive medium is stored contiguously.

Bytes representing the contents of files (after the header record of each file) are not
translated in any way and are not constrained to represent characters in any character set.
The tar format does not distinguish text files from binary files, and no translation of file
contents is performed.

The name, linkname, magic, uname, and gname are null-terminated character strings. All
other fileds are zero-filled octal numbers in ASCII. Each numeric field of width w contains
w minus 2 digits, a space, and a null, except size, and mtime, which do not contain the
trailing null.

The name field is the file name of the file, with directory names (if any) preceding the
file name, separated by slashes.

FIXME: how big a name before field overflows?

The mode field provides nine bits specifying file permissions and three bits to specify the
Set UID, Set GID, and Save Text (sticky) modes. Values for these bits are defined above.
When special permissions are required to create a file with a given mode, and the user
restoring files from the archive does not hold such permissions, the mode bit(s) specifying
those special permissions are ignored. Modes which are not supported by the operating
system restoring files from the archive will be ignored. Unsupported modes should be faked

Chapter 11: Format of tar archives 115

up when creating or updating an archive; e.g. the group permission could be copied from
the other permission.

The uid and gid fields are the numeric user and group ID of the file owners, respectively.
If the operating system does not support numeric user or group IDs, these fields should be
ignored.

The size field is the size of the file in bytes; linked files are archived with this field
specified as zero.

FIXME: xref Modifiers

, in particular the ‘--incremental’ (‘-G’) option.

The mtime field is the modification time of the file at the time it was archived. It is the
ASCII representation of the octal value of the last time the file was modified, represented
as an integer number of seconds since January 1, 1970, 00:00 Coordinated Universal Time.

The chksum field is the ASCII representation of the octal value of the simple sum of
all bytes in the header record. Each 8-bit byte in the header is added to an unsigned
integer, initialized to zero, the precision of which shall be no less than seventeen bits. When
calculating the checksum, the chksum field is treated as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular implementation
does not recognize or permit the specified type, the file will be extracted as if it were a
regular file. As this action occurs, tar issues a warning to the standard error.

The atime and ctime fields are used in making incremental backups; they store, respec-
tively, the particular file’s access time and last inode-change time.

The offset is used by the ‘--multi-volume’ (‘-M’) option, when making a multi-volume
archive. The offset is number of bytes into the file that we need to restart at to continue
the file on the next tape, i.e., where we store the location that a continued file is continued
at.

The following fields were added to deal with sparse files. A file is sparse if it takes in
unallocated blocks which end up being represented as zeros, i.e., no useful data. A test to
see if a file is sparse is to look at the number blocks allocated for it versus the number of
characters in the file; if there are fewer blocks allocated for the file than would normally be
allocated for a file of that size, then the file is sparse. This is the method tar uses to detect
a sparse file, and once such a file is detected, it is treated differently from non-sparse files.

Sparse files are often dbm files, or other database-type files which have data at some
points and emptiness in the greater part of the file. Such files can appear to be very large
when an ‘ls -l’ is done on them, when in truth, there may be a very small amount of
important data contained in the file. It is thus undesirable to have tar think that it must
back up this entire file, as great quantities of room are wasted on empty blocks, which can
lead to running out of room on a tape far earlier than is necessary. Thus, sparse files are
dealt with so that these empty blocks are not written to the tape. Instead, what is written
to the tape is a description, of sorts, of the sparse file: where the holes are, how big the
holes are, and how much data is found at the end of the hole. This way, the file takes up
potentially far less room on the tape, and when the file is extracted later on, it will look
exactly the way it looked beforehand. The following is a description of the fields used to
handle a sparse file:

Chapter 11: Format of tar archives 116

The sp is an array of struct sparse. Each struct sparse contains two 12-character
strings which represent an offset into the file and a number of bytes to be written at that
offset. The offset is absolute, and not relative to the offset in preceding array element.

The header can hold four of these struct sparse at the moment; if more are needed,
they are not stored in the header.

The isextended flag is set when an extended_header is needed to deal with a file. Note
that this means that this flag can only be set when dealing with a sparse file, and it is only
set in the event that the description of the file will not fit in the alloted room for sparse
structures in the header. In other words, an extended header is needed.

The extended_header structure is used for sparse files which need more sparse structures
than can fit in the header. The header can fit 4 such structures; if more are needed, the
flag isextended gets set and the next record is an extended_header.

Each extended_header structure contains an array of 21 sparse structures, along with
a similar isextended flag that the header had. There can be an indeterminate number of
such extended_headers to describe a sparse file.

LF_NORMAL
LF_OLDNORMAL

These flags represent a regular file. In order to be compatible with older versions
of tar, a typeflag value of LF_OLDNORMAL should be silently recognized as
a regular file. New archives should be created using LF_NORMAL. Also, for
backward compatibility, tar treats a regular file whose name ends with a slash
as a directory.

LF_LINK This flag represents a file linked to another file, of any type, previously archived.
Such files are identified in Unix by each file having the same device and inode
number. The linked-to name is specified in the linkname field with a trailing
null.

LF_SYMLINK
This represents a symbolic link to another file. The linked-to name is specified
in the linkname field with a trailing null.

LF_CHR
LF_BLK These represent character special files and block special files respectively. In this

case the devmajor and devminor fields will contain the major and minor device
numbers respectively. Operating systems may map the device specifications to
their own local specification, or may ignore the entry.

LF_DIR This flag specifies a directory or sub-directory. The directory name in the name
field should end with a slash. On systems where disk allocation is performed
on a directory basis, the size field will contain the maximum number of bytes
(which may be rounded to the nearest disk block allocation unit) which the
directory may hold. A size field of zero indicates no such limiting. Systems
which do not support limiting in this manner should ignore the size field.

LF_FIFO This specifies a FIFO special file. Note that the archiving of a FIFO file archives
the existence of this file and not its contents.

Chapter 11: Format of tar archives 117

LF_CONTIG
This specifies a contiguous file, which is the same as a normal file except that,
in operating systems which support it, all its space is allocated contiguously on
the disk. Operating systems which do not allow contiguous allocation should
silently treat this type as a normal file.

A . . . Z These are reserved for custom implementations. Some of these are used in the
GNU modified format, as described below.

Other values are reserved for specification in future revisions of the P1003 standard, and
should not be used by any tar program.

The magic field indicates that this archive was output in the P1003 archive format. If
this field contains TMAGIC, the uname and gname fields will contain the ASCII representation
of the owner and group of the file respectively. If found, the user and group IDs are used
rather than the values in the uid and gid fields.

11.2 GNU Extensions to the Archive Format

(This message will disappear, once this node revised.)

The GNU format uses additional file types to describe new types of files in an archive.
These are listed below.

LF_DUMPDIR
’D’ This represents a directory and a list of files created by the ‘--incremental’

(‘-G’) option. The size field gives the total size of the associated list of files.
Each file name is preceded by either a ‘Y’ (the file should be in this archive) or
an ‘N’. (The file is a directory, or is not stored in the archive.) Each file name
is terminated by a null. There is an additional null after the last file name.

LF_MULTIVOL
’M’ This represents a file continued from another volume of a multi-volume archive

created with the ‘--multi-volume’ (‘-M’) option. The original type of the file
is not given here. The size field gives the maximum size of this piece of the file
(assuming the volume does not end before the file is written out). The offset
field gives the offset from the beginning of the file where this part of the file
begins. Thus size plus offset should equal the original size of the file.

LF_SPARSE
’S’ This flag indicates that we are dealing with a sparse file. Note that archiving a

sparse file requires special operations to find holes in the file, which mark the
positions of these holes, along with the number of bytes of data to be found
after the hole.

LF_VOLHDR
’V’ This file type is used to mark the volume header that was given with the

‘--label=archive-label ’ (‘-V archive-label ’) option when the archive was
created. The name field contains the name given after the ‘--label=archive-
label ’ (‘-V archive-label ’) option. The size field is zero. Only the first file
in each volume of an archive should have this type.

Chapter 11: Format of tar archives 118

You may have trouble reading a GNU format archive on a non-GNU system if the options
‘--incremental’ (‘-G’), ‘--multi-volume’ (‘-M’), ‘--sparse’ (‘-S’), or ‘--label=archive-
label ’ (‘-V archive-label ’) were used when writing the archive. In general, if tar does
not use the GNU-added fields of the header, other versions of tar should be able to read
the archive. Otherwise, the tar program will give an error, the most likely one being a
checksum error.

11.3 Comparison of tar and cpio

(This message will disappear, once this node revised.)

Here is a summary of differences between tar and cpio. The accuracy of the following
information has not been verified. The following people contributed to this section, mainly
through a survey conducted in 1991. The remainder of this section does not otherwise try
to relate topics to people.

Bent Bertelsen dmdata@login.dkuug.dk
David Hoopes talgras!david
Guy Harris guy@auspex.com
Kai Petzke wpp@marie.physik.tu-berlin.de
Kristen Nielsen dmdata@login.dkuug.dk
Leslie Mikesell les@chinet.chi.il.us

FIXME: Reorganize the following material

tar handles symbolic links in the form in which it comes in BSD; cpio doesn’t handle
symbolic links in the form in which it comes in System V prior to SVR4, and some vendors
may have added symlinks to their system without enhancing cpio to know about them.
Others may have enhanced it in a way other than the way I did it at Sun, and which was
adopted by AT&T (and which is, I think, also present in the cpio that Berkeley picked up
from AT&T and put into a later BSD release—I think I gave them my changes).

(SVR4 does some funny stuff with tar; basically, its cpio can handle tar format input,
and write it on output, and it probably handles symbolic links. They may not have bothered
doing anything to enhance tar as a result.)

cpio handles special files; traditional tar doesn’t.

tar comes with V7, System III, System V, and BSD source; cpio comes only with
System III, System V, and later BSD (4.3-tahoe and later).

tar’s way of handling multiple hard links to a file can handle file systems that support
32-bit inumbers (e.g., the BSD file system); cpios way requires you to play some games (in
its "binary" format, i-numbers are only 16 bits, and in its "portable ASCII" format, they’re
18 bits—it would have to play games with the "file system ID" field of the header to make
sure that the file system ID/i-number pairs of different files were always different), and I
don’t know which cpios, if any, play those games. Those that don’t might get confused
and think two files are the same file when they’re not, and make hard links between them.

tars way of handling multiple hard links to a file places only one copy of the link on the
tape, but the name attached to that copy is the only one you can use to retrieve the file;
cpios way puts one copy for every link, but you can retrieve it using any of the names.

>What type of check sum (if any) is used, and how is this calculated.

Chapter 11: Format of tar archives 119

See the attached manual pages for tar and cpio format. tar uses a checksum which is
the sum of all the bytes in the tar header for a file; cpio uses no checksum.

>If anyone knows why cpio was made when tar was prasent >at the unix scene,
It wasn’t. cpio first showed up in PWB/UNIX 1.0; no generally-available version of

UNIX had tar at the time. I don’t know whether any version that was generally available
within AT&T had tar, or, if so, whether the people within AT&T who did cpio knew
about it.

On restore, if there is a corruption on a tape tar will stop at that point, while cpio will
skip over it and try to restore the rest of the files.

The main difference is just in the command syntax and header format.
tar is a little more tape-oriented in that everything is blocked to start on a block

boundary.
>Is there any differences between the ability to recover crashed >archives be-
tween the two of them. (Is there any chance of recovering >crashed archives at
all.)

Theoretically it should be easier under tar since the blocking lets you find a header with
some variation of ‘dd skip=nn ’. However, modern cpio’s and variations have an option to
just search for the next file header after an error with a reasonable chance of re-syncing.
However, lots of tape driver software won’t allow you to continue past a media error which
should be the only reason for getting out of sync unless a file changed sizes while you were
writing the archive.

>If anyone knows why cpio was made when tar was prasent >at the unix scene,
please tell me about this too.

Probably because it is more media efficient (by not blocking everything and using only
the space needed for the headers where tar always uses 512 bytes per file header) and it
knows how to archive special files.

You might want to look at the freely available alternatives. The major ones are afio,
GNU tar, and pax, each of which have their own extensions with some backwards compat-
ibility.

Sparse files were tarred as sparse files (which you can easily test, because the resulting
archive gets smaller, and GNU cpio can no longer read it).

Index 120

Index

A
abbreviations for months . 106
absolute file names . 84
Adding archives to an archive 54
Adding files to an archive . 52
Age, excluding files by . 62
ago in date strings . 109
Alaska-Hawaii Time . 107
am in date strings . 106
archive . 1
Archive contents, list of . 55
Archive creation . 52
archive member . 1
Archive members, list of . 55
Archive Name . 61
Atlantic Standard Time . 107
authors of getdate . 109
Azores Time . 107

B
Baghdad Time . 107
beginning of time, for Unix 105
Bellovin, Steven M. 109
Berets, Jim . 109
Berry, K. 110
Block Size . 86
Blocking Factor . 86
blocking factor . 88
Blocks, incomplete . 57
bug reports . 3
Bytes per block . 86

C
calendar date item . 105
case, ignored in dates . 105
Central Alaska Time . 107
Central European Time . 107
Central Standard Time . 107
China Coast Time . 107
comments, in dates . 105
Compressed archives . 77
Concatenating Archives . 54
corrupted archives . 76, 96

D
DAT blocking . 88
date format, ISO 8601 . 106
date input formats . 105
day in date strings . 109
day of week item . 108
daylight savings time . 108

Deleting files from an archive 54
Directing output . 61
directory arguments . 49, 51
Directory, changing in mid-stream 68
Disk space, running out of . 59
displacement of dates . 109
Double-checking a write operation 72
dumps, full . 96
dumps, incremental . 98

E
East Australian Standard Time 108
Eastern European Time . 107
Eastern Standard Time . 107
End-of-archive entries, ignoring 57
entry . 2
epoch, for Unix . 105
Error message, record number of 70
Exabyte blocking . 88
Excluding file by age . 62
Excluding files by file system 62
Excluding files by name and pattern 62
exit status . 32
Extraction . 56
extraction . 2

F
Feedback from tar . 70
file name . 1
File Name arguments, alternatives 64
File names, excluding files by 62
File names, using symbolic links 73
File system boundaries, not crossing 62
first in date strings . 105
Format Options . 86
Format Parameters . 86
Format, old style . 73
fortnight in date strings . 109
French Winter Time . 107
full dumps . 96

G
general date syntax . 105
getdate . 105
Getting more information during the operation

. 70
Greenwich Mean Time . 107
Guam Standard Time . 108

Index 121

H
Hawaii Standard Time . 107
hour in date strings . 109

I
Ignoring end-of-archive entries 57
incompleteness of this manual 2
incremental dumps . 98
Information during operation 70
Information on progress and status of operations

. 70
Interactive operation . 71
International Date Line East 108
International Date Line West 107
ISO 8601 date format . 106
items in date strings . 105

J
Japan Standard Time . 108

L
Labeling an archive . 94
Labelling multi-volume archives 60
Labels on the archive media 94
Large lists of file names on small machines 57
last day . 108
last in date strings . 105
Lists of file names . 64

M
MacKenzie, David . 109
member . 1
member name . 1
Meyering, Jim . 109
Middle European Time . 107
Middle European Winter Time 107
Middle of the archive, starting in the 59
midnight in date strings . 106
minute in date strings . 109
minutes, timezone correction by 106
Modes of extracted files . 58
Modification time, excluding files by 62
Modification times of extracted files 58
Modifying archives . 51
month in date strings . 109
month names in date strings 106
months, written-out . 105
Mountain Standard Time . 107
Multi-volume archives . 93

N
Names of the files in an archive 55

Naming an archive . 61
New Zealand Standard Time 108
next day . 108
next in date strings . 105
Nome Standard Time . 107
noon in date strings . 106
now in date strings . 109
ntape device . 89
Number of bytes per block . 86
Number of records per block 86
numbers, written-out . 105

O
Old style archives . 73
Old style format . 73
option syntax, traditional . 33
Options to specify archive format. 86
Options when reading archives 57
ordinal numbers . 105
Overwriting old files, prevention 58

P
Pacific Standard Time . 107
Permissions of extracted files 58
Pinard, F. 110
pm in date strings . 106
Progress information . 70
Protecting old files . 58
pure numbers in date strings 109

R
Reading incomplete blocks . 57
Record number where error occured 70
Records per block . 86
relative items in date strings 109
remote tape drive . 84
Removing files from an archive 54
reporting bugs . 3
Resurrecting files from an archive 56
Retrieving files from an archive 56
return status . 32
rmt . 84
Running out of space . 57
Running out of space during extraction 59

S
Salz, Rich . 109
Small memory . 57
Space on the disk, recovering from lack of 59
Sparse Files . 78
Specifying archive members . 62
Specifying files to act on . 62
Standard input and output . 61
Standard output, writing extracted files to 58

Index 122

Status information . 70
Storing archives in compressed format 77
Swedish Winter Time . 107
Symbolic link as file name . 73

T
tape blocking . 88
tape marks . 90
tape positioning . 89
tar . 1
tar archive . 1
tar entry . 2
tar file . 2
tar to standard input and output 61
this in date strings . 109
time of day item . 106
timezone correction . 106
timezone item . 107
today in date strings . 109
tomorrow in date strings . 109

U
Ultrix 3.1 and write failure . 84
Universal Coordinated Time 107
unpacking . 2

Updating an archive . 52
USSR Zone . 107
uuencode . 81

V
Verbose operation . 70
Verifying a write operation . 72
Verifying the currency of an archive 72
Version of the tar program . 70

W
week in date strings . 109
West African Time . 107
West Australian Standard Time 107
Western European Time . 107
Where is the archive? . 61
Working directory, specifying 68
Writing extracted files to standard output 58
Writing new archives . 52

Y
year in date strings . 109
yesterday in date strings . 109
Yukon Standard Time . 107

i

Short Contents

1 Introduction . 1

2 Tutorial Introduction to tar . 6

3 Invoking GNU tar . 31

4 Basic tar Operations . 46

5 Specifying Names to tar . 61

6 Being Even More Careful . 70

7 Controlling the Archive Format . 75

8 Tapes and Other Archive Media . 82

9 Performing Backups and Restoring Files 96

10 Date input formats . 105

11 Format of tar archives . 111

Index . 120

ii

Table of Contents

1 Introduction . 1
1.1 What tar Does . 1
1.2 GNU tar Authors . 2
1.3 Reporting bugs or suggestions . 3
1.4 Support considerations . 3

1.4.1 Stability of GNU tar . 3
1.4.2 Should we rewrite the thing? . 3
1.4.3 Why maintaining it? . 4
1.4.4 MSDOS and other systems? . 5

2 Tutorial Introduction to tar 6
2.1 How to Create Archives . 7

2.1.1 Creating Archives of Files . 8
2.1.2 Using tar in Verbose Mode . 10
2.1.3 How to Archive Directories . 10
2.1.4 Creating an Archive from the Superior Directory 11
2.1.5 Comparing Files in an Archive with Files in the File System

. 12
2.1.6 Using Compare from the Superior Directory 15

2.2 How to List Archives . 15
2.2.1 Listing the Contents of an Archive . 16
2.2.2 Getting Additional File Information . 17
2.2.3 List A Specific File in an Archive . 18
2.2.4 Listing the Contents of a Stored Directory 19

2.3 How to Extract Members from an Archive . 20
2.3.1 Extract Files from an Archive into Your Current Directory

. 20
2.3.2 Extracting Files from an Archive . 21
2.3.3 Extracting Specific Files . 22
2.3.4 Extracting Directories . 22

2.4 How to Add Files to Existing Archives . 23
2.4.1 Appending Files to an Archive . 24
2.4.2 Updating Files in an Archive . 26
2.4.3 Concatenating Archives . 27

2.5 How to Delete Members from Archives . 29

3 Invoking GNU tar . 31
3.1 General Synopsis of tar . 31
3.2 Many Styles for Options . 32

3.2.1 Mnemonic Option Style . 32
3.2.2 Short Option Style . 32
3.2.3 Old Option Style . 33

iii

3.2.4 Mixing Option Styles . 34
3.3 All Available Options . 35

3.3.1 Device selection and switching . 42
3.3.2 Device blocking . 43
3.3.3 Old classification of options . 43

4 Basic tar Operations . 46
4.1 Creating a New Archive . 51
4.2 Adding to an Existing Archive . 52
4.3 Updating an Archive . 53
4.4 Combining Archives . 53
4.5 Removing Archive Members . 54
4.6 Listing Archive Members . 55
4.7 Extracting Archive Members . 56

4.7.1 Options to Help Read Archives . 57
4.7.2 Changing How tar Writes Files . 58
4.7.3 Recovering From Scarce Disk Space . 59

4.8 Comparing Archives Members with Files . 60
4.9 Matching the Format Parameters . 60

5 Specifying Names to tar . 61
5.1 Changing the Archive Name . 61
5.2 Selecting Files by Characteristic . 62

5.2.1 Reading Names from a File . 64
5.2.2 Excluding Some Files . 64
5.2.3 Operating Only on New Files . 65
5.2.4 Crossing Filesystem Boundaries . 65

5.3 Local file selection . 65
5.3.1 Changing Directory . 67
5.3.2 Absolute File Names . 68

6 Being Even More Careful . 70
6.1 GNU tar documentation . 70
6.2 Checking tar progress . 70
6.3 Asking for Confirmation During Operations 71
6.4 Verifying Data as It is Stored . 72
6.5 Comparing an Archive with the File System 72
6.6 Making tar Archives More Portable . 73

6.6.1 Portable Names . 73
6.6.2 Symbolic Links . 73
6.6.3 Old V7 and POSIX Archives . 73
6.6.4 Checksumming Problems . 74

6.7 Write Protection . 74

iv

7 Controlling the Archive Format 75
7.1 Handling of file attributes . 75
7.2 Archive format selection . 76
7.3 Using Less Space through Compression . 77

7.3.1 Creating and Reading Compressed Archives 77
7.3.2 Dealing with Compressed Archives . 78
7.3.3 Archiving Sparse Files . 78

7.4 Special Options for Archiving . 79
7.5 The Structure of an Archive . 79
7.6 Operation mode modifiers . 80

8 Tapes and Other Archive Media 82
8.1 Device selection and switching . 82
8.2 Blocking . 85

8.2.1 Format Variations . 86
8.2.2 The Blocking Factor of an Archive . 86

8.3 Many archives on one tape . 89
8.3.1 Tape Positions and Tape Marks . 90
8.3.2 The mt Utility . 91

8.4 Using Multiple Tapes . 92
8.4.1 Archives Longer than One Tape or Disk 93
8.4.2 Tape Files . 94

8.5 Including a Label in the Archive . 94

9 Performing Backups and Restoring Files 96
9.1 Using tar to Perform Full Dumps . 96
9.2 Using tar to Perform Incremental Dumps . 98
9.3 The Incremental Options . 99
9.4 Levels of Backups . 100
9.5 Setting Parameters for Backups and Restoration 101

9.5.1 An Example Text of ‘Backup-specs’ . 102
9.5.2 Syntax for ‘Backup-specs’ . 102

9.6 Using the Backup Scripts . 103
9.7 Using the Restore Script . 103

10 Date input formats . 105
10.1 General date syntax . 105
10.2 Calendar date item . 105
10.3 Time of day item . 106
10.4 Timezone item . 107
10.5 Day of week item . 108
10.6 Relative item in date strings . 109
10.7 Pure numbers in date strings . 109
10.8 Authors of getdate . 109

v

11 Format of tar archives . 111
11.1 The Standard Format . 111
11.2 GNU Extensions to the Archive Format . 117
11.3 Comparison of tar and cpio . 118

Index . 120

	Introduction
	What tar Does
	GNU tar Authors
	Reporting bugs or suggestions
	Support considerations
	Stability of GNU tar
	Should we rewrite the thing?
	Why maintaining it?
	MSDOS and other systems?

	Tutorial Introduction to tar
	How to Create Archives
	Creating Archives of Files
	Using tar in Verbose Mode
	How to Archive Directories
	Creating an Archive from the Superior Directory
	Comparing Files in an Archive with Files in the File System
	Using Compare from the Superior Directory

	How to List Archives
	Listing the Contents of an Archive
	Getting Additional File Information
	List A Specific File in an Archive
	Listing the Contents of a Stored Directory

	How to Extract Members from an Archive
	Extract Files from an Archive into Your Current Directory
	Extracting Files from an Archive
	Extracting Specific Files
	Extracting Directories

	How to Add Files to Existing Archives
	Appending Files to an Archive
	Updating Files in an Archive
	Concatenating Archives

	How to Delete Members from Archives

	Invoking GNU tar
	General Synopsis of tar
	Many Styles for Options
	Mnemonic Option Style
	Short Option Style
	Old Option Style
	Mixing Option Styles

	All Available Options
	Device selection and switching
	Device blocking
	Old classification of options

	Basic tar Operations
	Creating a New Archive
	Adding to an Existing Archive
	Updating an Archive
	Combining Archives
	Removing Archive Members
	Listing Archive Members
	Extracting Archive Members
	Options to Help Read Archives
	Changing How tar Writes Files
	Recovering From Scarce Disk Space

	Comparing Archives Members with Files
	Matching the Format Parameters

	Specifying Names to tar
	Changing the Archive Name
	Selecting Files by Characteristic
	Reading Names from a File
	Excluding Some Files
	Operating Only on New Files
	Crossing Filesystem Boundaries

	Local file selection
	Changing Directory
	Absolute File Names

	Being Even More Careful
	GNU tar documentation
	Checking tar progress
	Asking for Confirmation During Operations
	Verifying Data as It is Stored
	Comparing an Archive with the File System
	Making tar Archives More Portable
	Portable Names
	Symbolic Links
	Old V7 and POSIX Archives
	Checksumming Problems

	Write Protection

	Controlling the Archive Format
	Handling of file attributes
	Archive format selection
	Using Less Space through Compression
	Creating and Reading Compressed Archives
	Dealing with Compressed Archives
	Archiving Sparse Files

	Special Options for Archiving
	The Structure of an Archive
	Operation mode modifiers

	Tapes and Other Archive Media
	Device selection and switching
	Blocking
	Format Variations
	The Blocking Factor of an Archive

	Many archives on one tape
	Tape Positions and Tape Marks
	The mt Utility

	Using Multiple Tapes
	Archives Longer than One Tape or Disk
	Tape Files

	Including a Label in the Archive

	Performing Backups and Restoring Files
	Using tar to Perform Full Dumps
	Using tar to Perform Incremental Dumps
	The Incremental Options
	Levels of Backups
	Setting Parameters for Backups and Restoration
	An Example Text of Backup-specs
	Syntax for Backup-specs

	Using the Backup Scripts
	Using the Restore Script

	Date input formats
	General date syntax
	Calendar date item
	Time of day item
	Timezone item
	Day of week item
	Relative item in date strings
	Pure numbers in date strings
	Authors of getdate

	Format of tar archives
	The Standard Format
	GNU Extensions to the Archive Format
	Comparison of tar and cpio

	Index

