1 Numbering lines in LuaTgpX

2 Version: 0.1, 2026-02-12
3 Udi Fogiel, 2026
1 The lualineno module provides flexible line numbering for LuaTgX-based formats (LualdTEX,

5 OpTEX, and Plain LuaTgX).

» Table of contents line
7 1 Loading 1ualineno v v v it it e e e e e e e e e e 25
B 2 User Interface L 30
9 2.1 Defining a Lineno oL 48
10 2.2 Notes For Plain Users e 73
u 3 Exampleso e 88
12 3.1 Number Lines Across the Document 89
13 3.2 Number Lines Per Page 119
14 3.3 Number Two Column Layout 150
15 3.4 Modulo oL 195
16 3.5 Reference a Line o 226
7 3.6 Link toa Line e 257
18 3.7 Ignore Line Numbers When Copying Text 294
19 3.8 The offset and anchor Keys 329
20 4 Callbacks L 354
2 5 Implementation e e e e 369
2 5.1 Luamodule 370
2 5.2 OpIEX package L 1078
21 5.3 BIEX package oL 1085

» 1 Loading lualineno

% 1o load the package you can use

2 KTEX \usepackage{lualineno}
2 OpTEX \load[lualineno]
2 Plain \directlua{require('lualineno')}

» 2 User Interface

s There is only one macro, \lualineno, which takes a single argument consisting of a list of key=val pairs
» which are separated by spaces (or end on lines). The possible keys are

3 define Takes a list of key=val pairs in itself, and is used to define a new lineno type. see line 49
31 for more details.

3 defaults Takes a list of key=val pairs in itself, and is used to set the default values of a newly
36 defined lineno type. see line 71 for more details.

3 set Takes a name of a defined 1ineno. Set this lineno as the active one.

38 unset Does not accept a value. Disables line numbers.

39 label Takes a list of tokens inside braces, e.g. {label}, these tokens will be fed into \label at a
10 later stage. Should be used after a glyph (but it does not have to be right after it).

1 anchor Does not accept a value. When used after a vertical box, line numbers for lines inside that
1 box will be positioned at the box boundaries.

3 processbox Takes an integer corresponding to a box. When using this key, numbers will be added
u to lines in this box. This is mainly useful for plain users who will need to use this in the output
15 routine, but might be useful if someone wants to number lines in a strange order.

1

46

47

48

49

50

51

52

53

59

60

61

65

66

67

68

72

73

74

84

85

86

88

89

90

91

Note that a line is numbered according to the attribute of the last node in it, so it is possible to
change lineno type in the middle of the line.

2.1 Defining a Lineno
When defining a lineno the following keys are available

name Accepts a string that will be used as the name for the set key. This key is mandatory. If
the same name is used a second time, the parameters of the existing type will be modified.

column Takes an integer. Each lineno type can have different parameters in different columns,
each definition only modifies the parameters for one column. The default is 1.

toks Takes a list of tokens inside braces. These tokens will be executed each time before line
numbers are added to a line. The tokens do not have to be fully expandable, but they should not
create any nodes. The default is empty.

left Takes a list of tokens inside braces. These tokens will be fed into an \hbox which will be added
to the left side of a line. The default is empty.

right Takes a list of tokens inside braces. These tokens will be fed into an \hbox which will be
added to the right side of a line. The default is empty.

line Takes two boolean keys, number and recurse. If number is true then hlists of subtype 1line will
be numbered, default is true. If recurse is true hlists of subtype line will be searched recursively
to check if they have lines inside of them (for example minipage inside of a line), default is true.

box The same as 1ine but for hlists of subtype box.
alignment The same as line but for hlists of subtype alignment.
equation The same as 1line but for hlists of subtype equation.

displayalignment The same as line but for hlists of subtype alignment which are created inside
a display equation.

offset A boolean key. If set to false, offsets will be ignored, and line numbers will be added right
before or after the lines. The default is true.

If a key is not specified when defining a lineno, the default value will be used. The default values
can be changed using the defaults key, which accepts the same keys as define do, except for name.

2.2 Notes For Plain Users

Plain users need to process the page box before it is shipped out. A simple example is

\catcode \@=11

\def\plainoutput{%
\setboxO\vbox{\makeheadline\pagebody\makefootlinel}y,
\lualineno{processbox=0}}
\shipout\box0
\advancepageno
\ifnum\outputpenalty>-\@MM\else \dosupereject\fi

\catcode \@=12

If 1luatexbase is not used, you will probably want to reallocate the attributes used by lualineno.
You can do this with the keys typeattr, colattr and markattr, which each accept an integer (the
attribute number). Note that in this case, all alignments will be treated as regular (even those inside
display equations), and the lualineno callbacks will not be defined.

3 Examples

3.1 Number Lines Across the Document

Since pre_shipout_filter is called inside the output routine, it is running inside a group, which means
you should use global counters. BTEX already does that by default, in OpTEX we need to use the \global
prefix.

93

94
95
96
97
98
99
100
101
102
103
104
105

119

120

121

122

123

124
125
126
127
128
129
130
131
132
133
134
135
136

165

17

172
173

195

196

INTEX

\newcounter{lineno}
\lualineno
{
define =

{

name = default

toks = {\stepcounter{lineno}}

left = {\tiny\thelineno
\kern.8em}

}
set = default
}

\

OpTEX

\newcount\lineno
\lualineno
{
define =

{

name = default
toks = {\globall\advance\lineno by 1}
left = {\thefontsize[5]
\the\lineno\kern.8em}
}
set = default

3.2 Number Lines Per Page

Since pre_shipout_filter is called inside the output routine, it is running inside a group, which means
you should use local counters. OpTEX already does that by default, in A TEX we need to reset the counter

per page.

Ve

IXTEX

\newcounter{lineno}
\counterwithin{lineno}{page}

\lualineno
{
define =
{
name = default
toks = {\stepcounter{lineno}}
left = {\tiny\thelineno
\kern.8em}
}
set = default
}

\

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\advance\lineno by 1}
left = {\thefontsize[5]
\the\lineno\kern.8em}

}
set = default
}

3.3 Number Two Column Layout

In this example, we add numbers to the right of lines in the first column and to the left in the second

column.

Ve

BTEX

\newcounter{lineno}
\lualineno
{
define =
{

name = default
toks = {\stepcounter{lineno}}
left = {\tiny\thelineno

OpTEX

\newcount\lineno
\lualineno
{
define =
{

name = default
toks = {\globall\advance\lineno by 1}
left = {\thefontsize[5]%

\kern.8em} \the\lineno\kern.8em}
} }
define = define =
{ {
name = default name = default
column = 2 column = 2
toks = {\stepcounter{linenol}} toks = {\global\advance\lineno by 1}
right = {\kern.8em\tiny right = {\kern.8em\thefontsize[5]%
\thelineno} \the\lineno}
} }
set = default set = default
} }
.
3.4 Modulo

If for example you want to print only every third line after the first, you can use something like

106

108
109
110
111
112
113
114
115
116
117
118

137

138
139
140
141

143
144
145
146
147
148
149

174

175
176
177
178
179
180
181
182
183

185
186
187
188
189
190
191
192

193
194

197

198
199
200
201
202
203
204
205
206
207
208
209
210

226

227

228

229

230
231
232
233
234
235
236
237
238
239
240
241
242

256

263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

294

296

4 N\
IATREX OpTEX
\newcounter{lineno} \newcount\lineno
\lualineno \lualineno
{ {
define = define =
{ {
name = default name = default
toks = {\stepcounter{lineno}} toks = {\globalladvance\lineno by 1}
left = {\ifnum\value{lineno}= left = {\ifnum\lineno=
\numexpr (\thelineno-1)/3*3+1\relax \numexpr (\lineno-1) /3*3+1\relax
\tiny\thelineno\kern.8em\fi} \thefontsize[5]
3 \the\lineno\kern.8em\fi}
set = default }
¥ set = default
¥
\ J

3.5 Reference a Line

You will need to create a label target, with \refstepcounter or \wlabel. Note that \refstepcounter
cannot be inside the number box because the \label will be executed at an outer group.

(\
BTEX OpTEX
\newcounter{lineno} \newcount\lineno
\lualineno \lualineno
{ {
define = define =
{ {
name = default name = default
toks = {\refstepcounter{lineno}} toks = {\global\advance\lineno by 1}
left = {\tiny left = {\thefontsize[5]%
\thelineno \wlabel{\the\lineno}/
\kern.8em} \the\lineno\kern.8em}
} }
set = default i
}
| J

now \lualineno{label={foo}} will create a label named foo that can be referenced later.

3.6 Link to a Line

When hyperref is loaded, \refstepcounter creates a node (a pdf destination), so we need to disable
the node creation temporarily and use \MakeLinkTarget inside the box. There might be a better way

though.
In OpTEX it is the same as with normal line reference, but we also put a destination node with
\dest.
4 N\
BTEX OpTEX
\newcounter{lineno} \newcount\lineno
\lualineno \lualineno
{ {
define = define =
{ {
name = default name = default
toks = {\AssignSocketPlug toks = {\globall\advance\lineno by 1}
{refstepcounter/target}{noop}/ left = {\thefontsize[5]7
\refstepcounter{lineno}} \wlabel{\the\lineno}/,
\AssignSocketPlug \dest [1line:\the\linenol’
{refstepcounter/target}{hyperref}} \the\lineno\kern.8em}
left = {\MakeLinkTarget{lineno} ¥
\tiny\thelineno\kern.8em} }
}
set = default
}
. J

3.7 Ignore Line Numbers When Copying Text

You can put the line number inside an empty ActualText span, although not all pdf readers support

that.

211

212
213
214
215
216
217
218
219
220
221
222
223
224
225

280

281
282
283
284
285
286
287
288
289
290
291
292
293

297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

329

330

331
332
333
334
335
336
337
338
339
340
341
342
343

344
345
346
347

INTEX

\newcounter{lineno}
\lualineno
{
define =
{
name = default
toks = {\stepcounter{lineno}}
left = {\pdfextension literal page
{/Span<</ActualText<>>>BDC}/

\tiny\thelineno
\pdfextension literal page{EMC}’
\kern.8em}
¥
set = default

}

\

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\globall\advance\lineno by 1}
left = {\thefontsize[51%
\pdfliteral page
{/Span<</ActualText<>>>BDC}/,
\the\lineno
\pdfliteral page{EMC}\kern.8em}

}
set = default
}

3.8 The offset and anchor Keys

The following example demonstrates what they do

\newcount\lineno
\lualineno
{
defaults
{
toks = {\advance\lineno by 1}
left = {\the\lineno\kern.8em}
right = {\kern.8em\the\lineno}
¥
define = {name = offset}
define = {name = nooffset offset = false}
set = offset
¥

\def\tmp{\noindent\hfil
\frame{\vbox{

\hbox{Text}\hbox{Spanning}\hbox{Multiple}\hbox{Lines}\hbox to 5cm{}

\vskip-\baselineskip}}}

o~ O Ot

\tmp
\medskip
\tmp\lualineno{anchor}
\medskip
\lualineno{set=nooffset}
\tmp
Text
Spanning
Multiple
Lines
5 |Text
6 |Spanning
7 |Multiple
8 |Lines
9 |Text 9
10 |Spanning 10
11 |Multiple 11
12 |Lines 12

4 Callbacks

There are three callbacks defined by lualineno

e lualineno.pre_numbering: A simple callback that is called before numbers are added to a line.
This is where the tokens from the toks keyword are executed, and labels are created if OpTEX is

used.

e lualineno.numbering: An exclusive callback that invokes the function that adds the numbers to

lines. You can replace the function if you want to modify things.

e lualineno.post_numbering: A simple callback that is called before numbers are added to a line.

This is where labels are created if KTEX is used.

5

313

314
315
316
317
318
319
320
321
322
323
324

326
327
328

= W N

363

364

365

368

369

370

371

372

391

None of the callbacks need a return value, and take as arguments the following (in order)

line: The line node where numbers will be added.

line_type: A table of the parameters of the type of the lineno (see the implementation for details)

offset: The calculated horizontal offset of the line from the box margin.

width: The width of the page or column (or anchored box) containing the line.

dir: The direction of the vertical list containing the line.

5 Implementation

5.1 Lua module

Initialization

Some declarations of local functions/constants of global ones to avoid table lookups.

© ®© N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23

so we won't need the csname anymore.

local
local
local
local
local
local
local
local
local
local
local
local
local
local
local
local

runtoks = tex.runtoks

put_next = token.unchecked_put_next
create = token.create

new_tok = token.new

lbrace = new_tok(string.byte('{'), token.command_id'left_brace')
rbrace = new_tok(string.byte('}'), token.command_id'right_brace')
new_tok(string.byte('b'), token.
d = new_tok(string.byte('d'), token.
i = new_tok(string.byte('i'), token.
r = new_tok(string.byte('r'), token.
zero = new_tok(string.byte('0'), token.command_id'other_char')

b

get_next = token.get_next
scan_toks = token.scan_toks
scan_string = token.scan_string
scan_list = token.scan_list
scan_int = token.scan_int

command_id'other_char')
command_id'other char')
command_id'other_char')
command_id'other char')

lualineno.lua

sadly there isn’t a nice way in LuaTgX to get a primitive token without using a csname. To
be sure \hbox has the correct meaning we can use tex.enableprimitives to create a new csname
with the meaning of the primitive, then create a token with the same .mode and .command fields

(local hbox = new_tok(141, 21))

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

local

hbox do

local prefix = '@lua”line&no_'

while token.is_defined(prefix ..

prefix = prefix .. 'Q@lua”line&no_'

end

tex.

enableprimitives(prefix,{'hbox'})

local tok = create(prefix .. 'hbox')

hbox

end

local
local
local
local
local
local
local
local
local
local
local
local
local

= new_tok(tok.mode, tok.command)

hlist_id = node.id('hlist')
vlist_id = node.id('vlist')
glyph_id = node.id('glyph')

tail = node.tail

get_props = node.getproperty
set_props = node.setproperty
get_attribute = node.get_attribute
set_attribute = node.set_attribute
node_flush = node.flush_node
insert_before = node.insert_before
insert_after = node.insert_after
traverse = node.traverse

'hbox') do

rangedimensions = node.rangedimensions

All of this is to avoid to use some implementation details

lualineno.lua

443

58
59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
7
78
79

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

114
115
116
117
118
119
120
121
122
123
124

local node_copy = node.copy

local base_kern = node.new('kern', 'user')

local line_sub, eq_sub, align_sub, box_sub

local ignored_subtypes = {}

for k,v in pairs(node.subtypes("hlist")) do

if v == "line" then line_sub = k end

if v == "alignment" then align_sub = k end

if v == "box" then box_sub = k end

if v == "equation" then eq_sub = k end

if v == "equationnumber" then ignored_subtypes[k] = true end
if v == "mathchar" then ignored_subtypes[k] = true end

end
local displayalign_sub = #node.subtypes("hlist") + 1
for k,v in pairs(node.subtypes("vlist")) do
if v == "vextensible" then ignored_subtypes[k] = true end
if v == "vdelimiter" then ignored_subtypes[k] = true end
end

local setattribute = tex.setattribute
local texerror = tex.error

local texnest = tex.nest

local format = tex.formatname

The module currently works with OpTEX, IXTEX or Plain.

lualineno.lua

local optex, latex, plain
if format:find("optex") then
optex = true
elseif format:find("latex") then
latex = true
elseif format == "luatex" or
format == "luahbtex" or
format:find("plain")
then
plain = true
end
if not (optex or latex or plain) then
error("lualineno: The format " .. format .. " is not supported\n\n"
"Use OpTeX, LualaTeX or Plain.")
end

local lineno_types = {
local lineno_attrs = {
local LINENO_NUMBER = Ox1
local LINENO_RECURSE = 0x2
local lineno_marks = {

anchor = 1,

processed = 2,

display = 3,

}
}

I

local type_attr = luatexbase and luatexbase.new_attribute('lualineno_type') or 0
local col_attr = luatexbase and luatexbase.new_attribute('lualineno_col') or 1
local mark_attr = luatexbase and luatexbase.new_attribute('lualineno_mark') or 2
local unset_attr = -Ox7FFFFFFF

We use the luakeyval module for the user interface
lualineno.lua

local keyval = require('luakeyval')
local scan_choice = keyval.choices
local scan_bool = keyval.bool

local process_keys = keyval.process
local messages = {

errorl = "lualineno: Wrong syntax in \\lualineno",
value_forbidden = 'lualineno: The key "%s" does not accept a value',
value_required = 'lualineno: The key "/s" requires a value',

515

526

527

528

Numbering Lines
In here we define the main functions of the module, the functions that find and number the lines in a
page.

The following function is used to number a line that is considered “real” (i.e. has some
glyphs in it that are not equation number or a big math delimiter). This function is used in the
lualineno.numbering callback, so it can be replaced if desired.

line is the hlist node representing the line, line_type is a lua table with the parameters defined in
the define key according to the attribute and the column, offset is the total shift calculated from the

start of the line and width is the width of the column containing the lines.

lualineno.lua
138

139 local function number_line(line, line_type, offset, width, dir)

140

141 local head = line.head

142 local is_offset = line_type['offset']

143

In case ITEX is used without the luacolor package, we add an additional group to make the

boxes color safe. Since token.scan_string is ran in horizontal mode, the default box direction is
\textdirection, and this can be pretty random at shipout time, so an explicit direction is specified.
Currently LTR is used, if someone ask an option can be added, but you can always use \hbox bidr 1 {}

inside the box.
lualineno.lua
151

152 put_next ({rbrace, rbrace})

153 put_next(line_type.left)

154 put_next ({hbox,b,d,i,r,zero,lbrace,lbrace})
155 put_next ({rbrace, rbracel})

156 put_next(line_type.right)

157 put_next ({hbox,b,d,i,r,zero,lbrace,lbracel})

158

to make sure “right” always means right, we check the line direction.

lualineno.lua
160

161 local end_box, start_box
162 if line.dir == "TLT" then
163 end_box = scan_list()
164 start_box = scan_list()
165 else

166 start_box = scan_list()
167 end_box = scan_list()
168 end

if the vertical list containing the line and the line has different directions we need to mirror the
kerns as the kern means opposite direction then the shift, or alignment (similar to how \shapemode is

working).

lualineno.lua
173

174 local start_kern_width = 0O

175 local end_kern_width = 0

176 if is_offset then

177 if line.dir == dir then

178 start_kern_width = offset

179 end_kern_width = width - line.width - offset
180 else

181 start_kern_width = width - line.width - offset
182 end_kern_width = offset

183 end

184 end

185

186 if start_box.head then

187 if start_kern_width ~= O then

188 local start_kern = node_copy(base_kern)

189 start_kern.kern = start_kern_width

190 head = insert_before(head,head,start_kern)
191 end

192 head = insert_before(head,head,start_box)

193 start_kern_width = -start_box.width - start_kern_width

194 if start_kern width ~= O then

195 local start_kern = node_copy(base_kern)
196 start_kern.kern = start_kern width

197 head = insert_before(head,head,start_kern)
198 end

199 else

200 node_flush(start_box)

201 end

202 if end_box.head then

203 if end_kern_width ~= O then

204 local end_kern = node_copy(base_kern)
205 end_kern.kern = end_kern_width

206 head = insert_after(head,tail (head),end_kern)
207 end

208 head = insert_after(head,tail(head),end_box)
209 else

210 node_flush(end_box)

211 end

212 line.head = head

213 end

214

215 local lineno_callbacks
216 if luatexbase then

217 luatexbase.create_callback('lualineno.pre_numbering', 'simple', false)
218 luatexbase.create_callback('lualineno.numbering', 'exclusive', number_line)
219 luatexbase.create_callback('lualineno.post_numbering', 'simple', false)
220 luatexbase.add_to_callback('lualineno.pre_numbering', function(_, line_type)
221 runtoks (function() put_next(line_typel['toks']) end)
222 end, 'lualineno.runtoks')
223 local call_callback = luatexbase.call_callback
224 lineno_callbacks = function(line, line_type, offset, width, dir)
225 call_callback('lualineno.pre_numbering', line, line_type, offset, width, dir)
226 call_callback('lualineno.numbering', line, line_type, offset, width, dir)
227 call_callback('lualineno.post_numbering', line, line_type, offset, width, dir)
228 end
229 else
230 lineno_callbacks = function(line, line_type, offset, width, dir)
231 runtoks (function() put_next(line_typel['toks']) end)
232 number_line(line, line_type, offset, width, dir)
233 end
234 end
235
592 Not every object that would be considered a line from LuaTEX’s point of view would be considered

ss a line from a human perspective. For example, a line containing only an indent box, or an alignment
s« containing only rules, so we use the following two functions to search for a glyph node recursively, while
s ignoring boxes for equation number, for big delimiters (i.e. in cases environment) or dummy boxes for

sss null delimiters.
lualineno.lua

243
244 local function real_box(list)
245 for n, id, sb in traverse(list) do
246 if id == glyph_id then
247 return true
248 elseif (id == hlist_id or id == vlist_id) and not ignored_subtypes[sb] then
249 if real_box(n.list) then
250 return true
251 end
252 end
253 end
254 return false
255 end
256
o1t If the first thing (that we care about) in a line is a glyph we simply number it, if it is an hlist we

sz keep looking inside for glyphs and if it is a vlist we add the shift to the offset and go back to finding

s1s lines in that vlist.
lualineno.lua
261

629

630

631

639

644

645

646

661

662

663

262 local function real_line(list, parent, offset)

263
264
265
266
267
268
269
270
271
272
273
274
275

for

end

n, id, sb in traverse(list) do

if id == glyph_id then
return true

elseif id == vlist_id and not ignored_subtypes[sb] and real_box(n.list) then
return n, offset + rangedimensions(parent, list, n)

elseif id == hlist_id and not ignored_subtypes[sb] and real_box(n.list) then
offset = offset + rangedimensions(parent, list, n)
return real_line(n.list, n, offset)

end

return false

This function finds the lines that needs to be numbered in a page. It should be used right be-

fore shipout, but can be used on individual boxes using the processbox key if needed (maybe special

numbering order is desired). When a line found, lineno_callbacks is called to number it.

281 local find_line
282 find_line = function(parent, list, column, offset, width)

283
284
285
286

if get_attribute(parent, mark_attr) == lineno_marks.processed then return end

set_

attribute(parent, mark_attr, lineno_marks.processed)

displacement.
289
290 local parent_is_vlist = parent.id == vlist_id
291 for n, id, sb in traverse(list) do

292

lualineno.lua

We need to keep track of the parent id to know if the .shift field represent horizontal or vertical

lualineno.lua

lines are hlists, so if a node is not one we dig deeper, while calculating the offset and the width.

If a column is found, or a box marked with the anchor key then the offset is reset and the width is
updated.

297
298
299
300
301
302
303
304
305
306
307
308
309
310

if id ~= hlist_id then
if not n.list then goto continue end
local new_offset, new_width = offset, width
local new_col = get_attribute(n, col_attr)
if get_attribute(n, mark_attr) == lineno_marks.anchor or new_col then
new_offset, new_width = 0, n.width
elseif parent_is_vlist then
new_offset = new_offset + n.shift
end
find_line(n, n.list, new_col or column, new_offset, new_width)
goto continue
end

lualineno.lua

A line type is determined by the attribute of its last node so that line types can be switched from

within the line (but maybe this should be configurable). The flag is a bitset that determines whether to
number or recurse further.

314
315
316
317
318
319
320
321
322
323

local line_attr = n.head and get_attribute(tail(n.head), type_attr)

lualineno.lua

local line_type = line_attr and lineno_types[line_attr] and lineno_types[line_attr] [column]

local flag

if sb == align_sub and get_attribute(n,mark_attr) == lineno_marks.display then

flag = line_type and line_type[displayalign_sub]
else

flag = line_type and line_type [sb]
end

If a line does not have any attribute we don’t number it, be we do recurse further.

10

lualineno.lua

682

683

693

694

695

696

716

732

326
327
328
329
330
331

local should_number = flag and (flag & LINENO_NUMBER) ~= 0 or false
local should_recurse = flag and (flag & LINENO_RECURSE) ~= O or true
if not (should_number or should_recurse) then

end

goto continue

This is the case where a line should be numbered only once. Maybe someone would like to number

alignment once, regardless of the fact the first column contains cells with paragraphs.

335
336
337
338
339
340
341
342
343

if should_number and not should_recurse then

end

if real_box(n.list) then
local new_offset = parent_is_vlist and (offset + n.shift) or offset
lineno_callbacks(n, line_type, new_offset, width, parent.dir)

end

goto continue

lualineno.lua

If real_line returned a new_offset, the first thing encountered in the line is a vlist, so we need
to find lines inside of that vlist as well. As before offset and width might need to be updated. If we
encounter a column, maybe this line contains more columns, so we number the first one and keep looking

for more.

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

local m, new_offset = real line(n.head, n, offset)
local new_width = width
if new_offset then

end

local new_col = get_attribute(m, col_attr)
if get_attribute(m, mark_attr) == lineno_marks.anchor or new_col then
new_offset, new_width = 0, m.width
elseif parent_is_vlist then
new_offset = new_offset + n.shift
end
find_line(m, m.head, new_col or column, new_offset, new_width)
if new_col then
find_line(n, n.head, new_col, new_offset, width)
end
goto continue

if not (m and should_number) then goto continue end

A line is found! update the offset and number it.

368
369
370
371
372

373 end

374 end
375

local new_offset = parent_is_vlist and (offset + n.shift) or offset
lineno_callbacks(n, line_type, new_offset, width, parent.dir)

::continue::

376 if not plain then
377 luatexbase.add_to_callback('pre_shipout_filter', function(box)
find_line(box, box.list, 1, O, box.width)

378

379 return true

380 end, 'lualineno.shipout')
381 end

382

Check if inside display for display alignment

384

385 if luatexbase then

386 luatexbase.add_to_callback("buildpage_filter", function(info)
387 if info == "before_display" then

388 setattribute (mark_attr,lineno_marks.display)

389 elseif info == "after_display" then

390 setattribute (mark_attr,unset_attr)

11

lualineno.lua

lualineno.lua

lualineno.lua

391 end

392 end, "lualineno.indisplay")
393 end

394

e Anchoring numbers to a box
lualineno.lua

396
397 local function mark_last_vlist(n)
398 local current = n
399 while current do
400 if current.id == vlist_id then
401 set_attribute(current, mark_attr, lineno_marks.anchor)
402 return true
403 elseif current.id == hlist_id then
404 if mark_last_vlist(tail(current.list)) then return true end
405 end
406 current = current.prev
407 end
408 return false
409 end
410
w0 labels

lualineno.lua
412

413 local make_label
414 local function find_label(line)

415 local list = line.list

416 for n in traverse(list) do

417 if n.id == glyph_id then

418 local props = get_props(n)

419 if props then

420 local label = props.lualineno
421 if label then

422 make_label (label, list, n)
423 end

424 end

425 elseif n.list then

426 find_label (n)

427 end

428 end

429 end

430

431 local function label_last_glyph(m, tokens)

432 if optex then

433 luatexbase.add_to_callback('lualineno.pre_numbering', find_label, 'lualineno.labels')
434 elseif latex then

435 luatexbase.add_to_callback('lualineno.post_numbering', find_label, 'lualineno.labels')
436 end

437 label_last_glyph = function(n, toks)

438 local current = n

439 while current do

440 if current.id == glyph_id then

441 local props = get_props(current)
442 if not props then

443 props = { }

444 set_props (current,props)
445 end

446 props.lualineno = toks

447 return true

448 elseif current.list then

449 if label_last_glyph(tail(current.list), toks) then
450 return true

451 end

452 end

453 current = current.prev

454 end

455 return false

456 end

12

809

810

811

457
458 end

return label_last_glyph(m, tokens)
459

User Interface
This section describes the definition of the one macro exposed to the end user
module.

. It is based on the luakeyval

lualineno.lua

464

465 local defaults = {

466 toks = { },

467 left = { },

468 right = { },

469 box = {number = true, recurse = truel},

470 alignment = {number = true, recurse = true},

471 displayalignment = {number = true, recurse = true},

472 equation = {number = true, recurse = true},

473 line = {number = true, recurse = truel},

474 offset = true,

475 column = 1,

476}

477

478 local inner_keys = {

479 number = {scanner = scan_bool, default = truel},

480 recurse = {scanner = scan_bool, default = true}

481 }

482

483 local defaults_keys = {

484 toks = {scanner = scan_toks},

485 left = {scanner = scan_toks},

486 right = {scanner = scan_toks},

487 box = {scanner = process_keys, args = {inner_keys, messages}},
488 alignment = {scanner = process_keys, args = {inner_keys, messages}},
489 displayalignment = {scanner = process_keys, args = {inner_keys, messagesl}},
490 equation = {scanner = process_keys, args = {inner_keys, messagesl}},
491 line = {scanner = process_keys, args = {inner_keys, messages}},
492 offset = {scanner = scan_bool},

493 column = {scanner = scan_int}

494 }

495

496 local function set_defaults()

497 local vals = process_keys(defaults_keys,messages)

198 for k,v in pairs(vals) do

499 defaults[k] = v

500 end

501 end

502

503 local define_keys = { }

504 for k,v in pairs(defaults_keys) do

505 define_keys[k] = v

506 end

507 define_keys.name = {scanner = scan_string}

508

509 local function define_lineno()

510 local vals = process_keys(define_keys, messages)

511 local name = vals['name']

512 if not name then

513 texerror("lualineno: Missing name when defining a lineno")
514 return

515 end

516

517 local col = vals['column'] or defaults.column

518 lineno_attrs[name] = lineno_attrs[name] or #lineno_types + 1
519 local i = lineno_attrs[name]

520 lineno_types[i] = lineno_types[i] or {}

521 lineno_types[i] [col] = lineno_types[i] [col] or {}

522

523 local ¢ = lineno_types[i] [col]

524

local function store_type(key, subtype_id)

13

526 local setting = vals[key] or defaults[key]

527 local flags = 0O

528 if setting.number then flags = flags | LINENO_NUMBER end
529 if setting.recurse then flags = flags | LINENO_RECURSE end
530 c[subtype_id] = flags

531 end

532

533 store_type('box', box_sub)

534 store_type('alignment', align_sub)

535 store_type('equation', eq_sub)

536 store_type('line', line_sub)

537 store_type('displayalignment', displayalign_sub)

538

539 c.toks = vals.toks or defaults.toks

540 c.left = vals.left or defaults.left

541 c.right = vals.right or defaults.right

542 if vals.offset ~= nil then

543 c.offset = vals.offset

544 else

545 c.offset = defaults.offset

546 end

547 end

548

549 local lualineno_keys = {

550 set = {scanner = scan_string},

551 unset = { default = true },

552 define = {scanner = function() return true end, func = define_lineno},
553 defaults = {scanner = function() return true end, func = set_defaults},
554 anchor = { default = true 1},

555 label = {scanner = scan_toks, args = {false, truel}},

556 typeattr = {scanner = scan_int},

557 colattr = {scanner = scan_int},

558 markattr = {scanner = scan_int},

559 processbox = {scanner = scan_int},

560

561

562 local function lualineno()

563 local saved_endlinechar = tex.endlinechar

564 tex.endlinechar = 32

565 local vals = process_keys(lualineno_keys,messages)

566 tex.endlinechar = saved_endlinechar

567 if vals.set then

568 local attr = lineno_attrs[vals.set]

569 if attr then

570 setattribute(type_attr, attr)

571 else

572 texerror("lualineno: type '" .. vals.set .. "' undefined")
573 end

574 end

575 if vals.unset then

576 setattribute(type_attr, unset_attr)

577 end

578 if vals.anchor then

579 for i=texmest.ptr,0,-1 do

580 if mark_last_vlist(texnest[i].tail) then return end
581 end

582 end

583 if vals.label then

584 for i=texnest.ptr,0,-1 do

585 if label_last_glyph(texnest[i].tail, vals.label) then return end
586 end

587 end

588 type_attr = vals.typeattr or type_attr

589 col_attr = vals.colattr or col_attr

590 mark_attr = vals.markattr or mark_attr

591 if vals.processbox then

592 local box = tex.box[vals.processbox]

593 local col = get_attribute(box, col_attr)

594 find_line(box, box.head, col or 1, 0, box.width)

595 end

14

957

968

596 end

597

598 do

599 if token.is_defined('lualineno') then

600 texio.write_nl('log', "lualineno: redefining \\lualineno")
601 end

602 local function_table = lua.get_functions_table()

603 local luafnalloc = luatexbase and luatexbase.new_luafunction

604 and luatexbase.new_luafunction('lualineno') or #function_table + 1
605 token.set_lua('lualineno', luafnalloc, 'protected')

606 function_table[luafnalloc] = lualineno

607 end

608

Format Specific Code
lualineno.lua
610

611 if format == 'optex' then
612

To be able to use OpTEX’s color mechanism in line numbers the colorizing needs to happen af-
ter line numbers are added, so we remove and insert back again the colorizing function from the

pre_shipout_filter callback.
lualineno.lua

616

617 local colorize = callback.remove_from_callback('pre_shipout_filter', '_colors')
618 callback.add_to_callback('pre_shipout_filter', colorize, '_colors')

619

This is the patch for \beginmulti in order mark the columns boxes. For each box we assign an

attribute with a value according to the column number.
lualineno.lua

623

624 local replace = table.concat({

625 "_directlua{",

626 "local column = tex.splitbox(6, tex.dimen[1], 'exactly') ",
627 "local num = tex.count['_tmpnum'] ",

628 "local attr = luatexbase.attributes['lualineno_col'] "

629 "node.set_attribute(column, attr, num) ",

630 "node.write(column) ",

631 "F,

632 1))

633 local find = [[_vsplit 6 to_dimen 1]]

634 local patch, success = token.get_macro("_createcolumns"):gsub(find, replace)
635

Log the success or failure of the patch
lualineno.lua

637
638 if success > 0 then
639 token.set_macro("_createcolumns", patch)
640 else
641 texio.write_nl('log', "lualineno: failed to patch _createcolumns")
642 end
643

OpTEX only needs to run \label [toks] before a destination to label it.

lualineno.lua

645

646 local lbracket = new_tok(string.byte('['), token.command_id'other_char')
647 local rbracket = new_tok(string.byte(']'), token.command_id'other_char')
648 local label_tok = create('_label')

649 make_label = function(label)

650 runtoks (function()

651 put_next ({rbracket})

652 put_next (label)

653 put_next ({label_tok,lbracket})

654 end)

655 end

656
657 elseif latex then
658

15

1006

1033

1034

1039

1040

1041

1048

1054

1062

1063

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

Here we mark the columns according to \if@firstcolumn

local true_mode do

local prefix = 'Clua”line&no_'
while token.is_defined(prefix .. 'iftrue') do
prefix = prefix .. '@lua”line&no_'
end
tex.enableprimitives(prefix,{'iftrue'})
local tok = create(prefix .. 'iftrue')
true_mode = tok.mode
end

luatexbase.add_to_callback('pre_output_filter', function()

if create('if@firstcolumn').mode == true_mode then
setattribute(col_attr, 1)
else

setattribute(col_attr, 2)
end
return true
end, 'lualineno.mark_columns')
luatexbase.add_to_callback('buildpage_filter', function(info)
if info == 'after_output' then
setattribute(col_attr, unset_attr)
end
end, 'lualineno.mark_columns')

color them.
689
690 luatexbase.declare_callback_rule('pre_shipout_filter',
691 'lualineno.shipout', 'before', 'luacolor.process')
692

lualineno.lua

If the luacolor package is loaded, colorizing must happen after line numbers are added to be able to

lualineno.lua

Since KTEX isn’t really shipping out the page box, but a box containing the \topmargin and the

page box which is shifted with \moveright, so it adds an undesired offset in find_line, so we mark the
page box as anchor.

697
698
699
700
701
702

704
705
706
707
708

710
711
712
713
714
715
716

local attr_num = luatexbase.attributes['lualineno_mark']

local replace = string.format([[\moveright \@themargin \vbox attr %d = -1]11, attr_num)

local find = [[\moveright \@themargin \vbox]]

local patch, num_subs = token.get_macro("@outputpage"):gsub(find, replace)

space controls are changed as well to avoid a bug in token.set_macro

find = [[\catcode ~\ 10\relax \catcode *\ 10\relax]]
replace = [[\catcode 32=10\relax \catcode 9=10\relax]]
patch, num_subs = patch:gsub(find, replace)

Log the success or failure of the patch

if num_subs > O then
token.set_macro("@outputpage", patch)
else

texio.write_nl('log', "lualineno: failed to patch \\@outputpage")

end

node, and add it to the list.

719
720
721

local label_tok = create('label')
make_label = function(label, list, n)

16

lualineno.lua

lualineno.lua

lualineno.lua

ITEX’s \label’s creates a whatsit node (\write), so we temporarily box the label to fetch this

lualineno.lua

722 runtoks (function()

723 put_next ({rbrace,rbracel})

724 put_next (label)

725 put_next ({hbox, lbrace, label_tok,lbrace})

726 local label_node = scan_list()

727 list = insert_after(list,n,node_copy(label_node.head))
728 node_flush(label_node)

729 end)

730 end

731

732 end

ws 5.2 OpTEX package

wre The OpTEX package does not contain much. It is mainly here for the documentation, or in case someone
s prefers to type \load[lualineno] instead of \directlua{require('lualineno')}.
lualineno.opm
2 _codedecl \lualineno {Line numbering <0.1, 2026-02-12>}
3
4 _directlua{require('lualineno')}
5 \addto_resetattrs{\lualineno{unset}}

ws 0.3 INTEX package

wss The INTEX package mostly contains patches to other packages to mark the column boxes.
lualineno.sty
\ProvidesPackage
{lualineno} [2026-02-12 vO.1
Line numbering in LuaTeX]

5 \AddToHook{build/page/reset}{\lualineno{unset}}

1

2

3

4

5 \directlua{require('lualineno')}

6

7

8 \AddToHook{package/multicol/after}{/
9

\directlua{
10 local replace = "\csstring\\\csstring\\directlua {
11 local right_box = token.create('mult@rightbox').index
12 local col_attr = luatexbase.attributes['lualineno_col']
13 local i = right_box
14 local last = tex.count['doublecol@number'] - 2
15 local column = 0O
16 while i < last do
17 i=1i+2
18 column = column + 1
19 tex.box[i] [col_attr] = column
20 end
21 tex.box[right_box] [col_attr] = column + 1}\csstring\\\csstring\\mc@align@columns"
22 local find = "\csstring\\\csstring\\mc@align@columns"
23 local patch, success = token.get_macro("page@sofar"):gsub(find, replace)
24 if success > O then
25 token.set_macro("page@sofar", patch)
26 else
27 texio.write_nl('log', "lualineno: failed to patch
28 \csstring\\\csstring\\page@sofar (multicol)")
29 end}}

31 \AddToHook{package/balance/after}{J,
32 \expandafter\renewcommand\expandafter
33 \@BAlancecol\expandafter{\@BAlancecol\directlua{

34 local sec_col = token.create('@outputbox').index

35 local first_col = token.create('@leftcolumn').index

36 local col_attr = luatexbase.attributes['lualineno_col']
37 tex.box[sec_col] [col_attr] = 2

38 tex.box[first_col] [col_attr] = 1}}}

39

40 \AddToHook{package/flushend/after}{/

41 \directlua{

17

52

75

76

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

local replace = "\csstring\\\csstring\\set@outputbox@with@footnote@and@float

\csstring\\\csstring\\fi \csstring\\\csstring\\directlua {
local sec_col = token.create('@outputbox').index
local first_col = token.create('@leftcolumn').index
local col_attr = luatexbase.attributes['lualineno_col']
tex.box[sec_col] [col_attr] = 2
tex.box[first_col] [col_attr] = 1}"
local find = "\csstring\\\csstring\\set@outputbox@uwith@footnote@and@float
\csstring\\\csstring\\fi "

local patch, success = token.get_macro("last@outputdblcol"):gsub(find, replace)

if success > O then
token.set_macro("last@outputdblcol", patch)
else
texio.write_nl('log', "lualineno: failed to patch
\csstring\\\csstring\\last@outputdblcol (flushend)")
end}}

\AddToHook{package/ltxgrid/after}{’
\def\box@column#1{/,

\1txgrid@info@sw{\class@info{\string\box@column\string#1}}{}%
\raise\topskip
\hb@xt@\columnwidth\bgroup
\dimen@\ht#1\@ifdim{\dimen@>\@colht}{\dimen@\@colht}{}%
\count@\vbadness\vbadness\@M
\dimen@ii\vfuzz\vfuzz\maxdimen
\1txgrid@info@sw{\saythe\Q@colht\saythe\dimen@}{}%
\vtop attr \directlua{tex.print(luatexbase.attributes['lualineno_col'])}
= \pagegrid@cur to\dimen®@\bgroup
\hrule\@height\z@
\unvbox#17,
\raggedcolumn@skip
\egroup
\vfuzz\dimen®@ii
\vbadness\count@
\hss
\egroup

}

\AddToHook{package/breqn/after}{/

\directlua{
local replace = "\csstring\\\csstring\\directlua {
local box = tex.getbox('EQ@numbox')
if box then
local n = node.copy_list(box)
n.subtype = 7
node.write(n)
end}"
local find = "\csstring\\\csstring\\copy \csstring\\\csstring\\EQ@numbox
local function patch_bregn(macro)
local patch, success = token.get_macro(macro) :gsub(find, replace)
if success > O then

"

token.set_macro(macro, patch)

else
texio.write_nl('log', "lualineno: failed to patch
\csstring\\\csstring\\" .. macro .. " (bregqn)")
end
end

patch_bregn("eq@typeset@RShifted")
patch_breqn("eq@typeset@LShifted")
patch_bregn("eq@typeset@rightnumber")
patch_breqn("eq@typeset@leftnumber")
I}

106 \endinput

18

	Lua-Lineno
	Contents
	Loading lualineno
	User Interface
	Defining a Lineno
	Notes For Plain Users

	Examples
	Number Lines Across the Document
	Number Lines Per Page
	Number Two Column Layout
	Modulo
	Reference a Line
	Link to a Line
	Ignore Line Numbers When Copying Text
	The offset and anchor Keys

	Callbacks
	Implementation
	Lua module
	OpTeX package
	LaTeX package

