
 Numbering lines in LuaTEX
 Version: 0.1, 2026-02-12
 Udi Fogiel, 2026
 The lualineno module provides flexible line numbering for LuaTEX-based formats (LuaLATEX,
 OpTEX, and Plain LuaTEX).

 Table of contents line

 1 Loading lualineno . 25
 2 User Interface . 30
 2.1 Defining a Lineno . 48

 2.2 Notes For Plain Users . 73
 3 Examples . 88
 3.1 Number Lines Across the Document . 89
 3.2 Number Lines Per Page . 119
 3.3 Number Two Column Layout . 150
 3.4 Modulo . 195
 3.5 Reference a Line . 226
 3.6 Link to a Line . 257
 3.7 Ignore Line Numbers When Copying Text . 294
 3.8 The offset and anchor Keys . 329
 4 Callbacks . 354
 5 Implementation . 369
 5.1 Lua module . 370
 5.2 OpTEX package . 1078
 5.3 LATEX package . 1085

 1 Loading lualineno
 To load the package you can use
 LATEX \usepackage{lualineno}

 OpTEX \load[lualineno]

 Plain \directlua{require('lualineno')}

 2 User Interface
 There is only one macro, \lualineno, which takes a single argument consisting of a list of key=val pairs
 which are separated by spaces (or end on lines). The possible keys are
 define Takes a list of key=val pairs in itself, and is used to define a new lineno type. see line 49
 for more details.
 defaults Takes a list of key=val pairs in itself, and is used to set the default values of a newly
 defined lineno type. see line 71 for more details.
 set Takes a name of a defined lineno. Set this lineno as the active one.
 unset Does not accept a value. Disables line numbers.
 label Takes a list of tokens inside braces, e.g. {label}, these tokens will be fed into \label at a
 later stage. Should be used after a glyph (but it does not have to be right after it).
 anchor Does not accept a value. When used after a vertical box, line numbers for lines inside that
 box will be positioned at the box boundaries.
 processbox Takes an integer corresponding to a box. When using this key, numbers will be added
 to lines in this box. This is mainly useful for plain users who will need to use this in the output
 routine, but might be useful if someone wants to number lines in a strange order.

1

 Note that a line is numbered according to the attribute of the last node in it, so it is possible to
 change lineno type in the middle of the line.

 2.1 Defining a Lineno
 When defining a lineno the following keys are available

 name Accepts a string that will be used as the name for the set key. This key is mandatory. If
 the same name is used a second time, the parameters of the existing type will be modified.
 column Takes an integer. Each lineno type can have different parameters in different columns,
 each definition only modifies the parameters for one column. The default is 1.
 toks Takes a list of tokens inside braces. These tokens will be executed each time before line
 numbers are added to a line. The tokens do not have to be fully expandable, but they should not
 create any nodes. The default is empty.
 left Takes a list of tokens inside braces. These tokens will be fed into an \hbox which will be added
 to the left side of a line. The default is empty.
 right Takes a list of tokens inside braces. These tokens will be fed into an \hbox which will be
 added to the right side of a line. The default is empty.
 line Takes two boolean keys, number and recurse. If number is true then hlists of subtype line will
 be numbered, default is true. If recurse is true hlists of subtype line will be searched recursively
 to check if they have lines inside of them (for example minipage inside of a line), default is true.
 box The same as line but for hlists of subtype box.
 alignment The same as line but for hlists of subtype alignment.
 equation The same as line but for hlists of subtype equation.
 displayalignment The same as line but for hlists of subtype alignment which are created inside
 a display equation.
 offset A boolean key. If set to false, offsets will be ignored, and line numbers will be added right
 before or after the lines. The default is true.

 If a key is not specified when defining a lineno, the default value will be used. The default values
 can be changed using the defaults key, which accepts the same keys as define do, except for name.

 2.2 Notes For Plain Users
 Plain users need to process the page box before it is shipped out. A simple example is

 \catcode`\@=11
 \def\plainoutput{%
 \setbox0\vbox{\makeheadline\pagebody\makefootline}%
 \lualineno{processbox=0}%
 \shipout\box0
 \advancepageno
 \ifnum\outputpenalty>-\@MM\else \dosupereject\fi
 }
 \catcode`\@=12

 If luatexbase is not used, you will probably want to reallocate the attributes used by lualineno.
 You can do this with the keys typeattr, colattr and markattr, which each accept an integer (the
 attribute number). Note that in this case, all alignments will be treated as regular (even those inside
 display equations), and the lualineno callbacks will not be defined.

 3 Examples
 3.1 Number Lines Across the Document
 Since pre_shipout_filter is called inside the output routine, it is running inside a group, which means
 you should use global counters. LATEX already does that by default, in OpTEX we need to use the \global
 prefix.

2

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default

 toks = {\stepcounter{lineno}}
 left = {\tiny\thelineno
 \kern.8em}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\thefontsize[5]

\the\lineno\kern.8em}
}

set = default
}

 3.2 Number Lines Per Page

 Since pre_shipout_filter is called inside the output routine, it is running inside a group, which means
 you should use local counters. OpTEX already does that by default, in LATEX we need to reset the counter
 per page.

 LATEX
 \newcounter{lineno}
 \counterwithin{lineno}{page}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\stepcounter{lineno}}
 left = {\tiny\thelineno
 \kern.8em}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\advance\lineno by 1}
left = {\thefontsize[5]

\the\lineno\kern.8em}
}

set = default
}

 3.3 Number Two Column Layout

 In this example, we add numbers to the right of lines in the first column and to the left in the second
 column.

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\stepcounter{lineno}}
 left = {\tiny\thelineno
 \kern.8em}
 }
 define =
 {
 name = default
 column = 2
 toks = {\stepcounter{lineno}}
 right = {\kern.8em\tiny
 \thelineno}
 }

 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\thefontsize[5]%

\the\lineno\kern.8em}
}

define =
{
name = default
column = 2
toks = {\global\advance\lineno by 1}
right = {\kern.8em\thefontsize[5]%

\the\lineno}
}

set = default
}

 3.4 Modulo

 If for example you want to print only every third line after the first, you can use something like

3

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\stepcounter{lineno}}
 left = {\ifnum\value{lineno}=
 \numexpr(\thelineno-1)/3*3+1\relax
 \tiny\thelineno\kern.8em\fi}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\ifnum\lineno=

\numexpr(\lineno-1)/3*3+1\relax
\thefontsize[5]
\the\lineno\kern.8em\fi}

}
set = default

}

 3.5 Reference a Line
 You will need to create a label target, with \refstepcounter or \wlabel. Note that \refstepcounter
 cannot be inside the number box because the \label will be executed at an outer group.

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\refstepcounter{lineno}}
 left = {\tiny
 \thelineno
 \kern.8em}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\thefontsize[5]%

\wlabel{\the\lineno}%
\the\lineno\kern.8em}

}
}

 now \lualineno{label={foo}} will create a label named foo that can be referenced later.

 3.6 Link to a Line
 When hyperref is loaded, \refstepcounter creates a node (a pdf destination), so we need to disable
 the node creation temporarily and use \MakeLinkTarget inside the box. There might be a better way
 though.
 In OpTEX it is the same as with normal line reference, but we also put a destination node with
 \dest.

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\AssignSocketPlug
 {refstepcounter/target}{noop}%
 \refstepcounter{lineno}%
 \AssignSocketPlug
 {refstepcounter/target}{hyperref}}
 left = {\MakeLinkTarget{lineno}%
 \tiny\thelineno\kern.8em}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\thefontsize[5]%

\wlabel{\the\lineno}%
\dest[line:\the\lineno]%
\the\lineno\kern.8em}

}
}

 3.7 Ignore Line Numbers When Copying Text
 You can put the line number inside an empty ActualText span, although not all pdf readers support
 that.

4

 LATEX
 \newcounter{lineno}
 \lualineno
 {
 define =
 {
 name = default
 toks = {\stepcounter{lineno}}
 left = {\pdfextension literal page
 {/Span<</ActualText<>>>BDC}%
 \tiny\thelineno
 \pdfextension literal page{EMC}%
 \kern.8em}
 }
 set = default
 }

OpTEX

\newcount\lineno
\lualineno
{
define =
{
name = default
toks = {\global\advance\lineno by 1}
left = {\thefontsize[5]%

\pdfliteral page
{/Span<</ActualText<>>>BDC}%

\the\lineno
\pdfliteral page{EMC}\kern.8em}

}
set = default

}

 3.8 The offset and anchor Keys
 The following example demonstrates what they do
 \newcount\lineno
 \lualineno
 {
 defaults =
 {
 toks = {\advance\lineno by 1}
 left = {\the\lineno\kern.8em}
 right = {\kern.8em\the\lineno}
 }
 define = {name = offset}
 define = {name = nooffset offset = false}
 set = offset
 }

 \def\tmp{\noindent\hfil
 \frame{\vbox{
 \hbox{Text}\hbox{Spanning}\hbox{Multiple}\hbox{Lines}\hbox to 5cm{}
 \vskip-\baselineskip}}}
 \tmp
 \medskip
 \tmp\lualineno{anchor}
 \medskip
 \lualineno{set=nooffset}
 \tmp

1 Text 1
2 Spanning 2
3 Multiple 3
4 Lines 4

5 Text 5
6 Spanning 6
7 Multiple 7
8 Lines 8
9 Text 9

10 Spanning 10
11 Multiple 11
12 Lines 12

 4 Callbacks
 There are three callbacks defined by lualineno

 • lualineno.pre_numbering: A simple callback that is called before numbers are added to a line.
 This is where the tokens from the toks keyword are executed, and labels are created if OpTEX is
 used.
 • lualineno.numbering: An exclusive callback that invokes the function that adds the numbers to
 lines. You can replace the function if you want to modify things.
 • lualineno.post_numbering: A simple callback that is called before numbers are added to a line.
 This is where labels are created if LATEX is used.

5

 None of the callbacks need a return value, and take as arguments the following (in order)

 • line: The line node where numbers will be added.
 • line_type: A table of the parameters of the type of the lineno (see the implementation for details)
 • offset: The calculated horizontal offset of the line from the box margin.
 • width: The width of the page or column (or anchored box) containing the line.
 • dir: The direction of the vertical list containing the line.

 5 Implementation
 5.1 Lua module

 Initialization
 Some declarations of local functions/constants of global ones to avoid table lookups.

lualineno.lua

 local runtoks = tex.runtoks
 local put_next = token.unchecked_put_next
 local create = token.create

 local new_tok = token.new
 local lbrace = new_tok(string.byte('{'), token.command_id'left_brace')
 local rbrace = new_tok(string.byte('}'), token.command_id'right_brace')
 local b = new_tok(string.byte('b'), token.command_id'other_char')
 local d = new_tok(string.byte('d'), token.command_id'other_char')
 local i = new_tok(string.byte('i'), token.command_id'other_char')
 local r = new_tok(string.byte('r'), token.command_id'other_char')
 local zero = new_tok(string.byte('0'), token.command_id'other_char')
 local get_next = token.get_next
 local scan_toks = token.scan_toks
 local scan_string = token.scan_string
 local scan_list = token.scan_list
 local scan_int = token.scan_int

 sadly there isn’t a nice way in LuaTEX to get a primitive token without using a csname. To
 be sure \hbox has the correct meaning we can use tex.enableprimitives to create a new csname
 with the meaning of the primitive, then create a token with the same .mode and .command fields
 so we won’t need the csname anymore. All of this is to avoid to use some implementation details
 (local hbox = new_tok(141, 21))

lualineno.lua

 local hbox do
 local prefix = '@lua^line&no_'
 while token.is_defined(prefix .. 'hbox') do
 prefix = prefix .. '@lua^line&no_'
 end
 tex.enableprimitives(prefix,{'hbox'})
 local tok = create(prefix .. 'hbox')
 hbox = new_tok(tok.mode, tok.command)
 end

 local hlist_id = node.id('hlist')
 local vlist_id = node.id('vlist')
 local glyph_id = node.id('glyph')
 local tail = node.tail
 local get_props = node.getproperty
 local set_props = node.setproperty
 local get_attribute = node.get_attribute
 local set_attribute = node.set_attribute
 local node_flush = node.flush_node
 local insert_before = node.insert_before
 local insert_after = node.insert_after
 local traverse = node.traverse
 local rangedimensions = node.rangedimensions

6

 local node_copy = node.copy
 local base_kern = node.new('kern', 'user')
 local line_sub, eq_sub, align_sub, box_sub
 local ignored_subtypes = {}
 for k,v in pairs(node.subtypes("hlist")) do
 if v == "line" then line_sub = k end
 if v == "alignment" then align_sub = k end
 if v == "box" then box_sub = k end
 if v == "equation" then eq_sub = k end
 if v == "equationnumber" then ignored_subtypes[k] = true end
 if v == "mathchar" then ignored_subtypes[k] = true end
 end
 local displayalign_sub = #node.subtypes("hlist") + 1
 for k,v in pairs(node.subtypes("vlist")) do
 if v == "vextensible" then ignored_subtypes[k] = true end
 if v == "vdelimiter" then ignored_subtypes[k] = true end
 end

 local setattribute = tex.setattribute
 local texerror = tex.error
 local texnest = tex.nest
 local format = tex.formatname

 The module currently works with OpTEX, LATEX or Plain.
lualineno.lua

 local optex, latex, plain
 if format:find("optex") then
 optex = true
 elseif format:find("latex") then
 latex = true
 elseif format == "luatex" or
 format == "luahbtex" or
 format:find("plain")
 then
 plain = true
 end
 if not (optex or latex or plain) then
 error("lualineno: The format " .. format .. " is not supported\n\n" ..
 "Use OpTeX, LuaLaTeX or Plain.")
 end

 local lineno_types = { }
 local lineno_attrs = { }
 local LINENO_NUMBER = 0x1
 local LINENO_RECURSE = 0x2
 local lineno_marks = {
 anchor = 1,
 processed = 2,
 display = 3,
 }
 local type_attr = luatexbase and luatexbase.new_attribute('lualineno_type') or 0
 local col_attr = luatexbase and luatexbase.new_attribute('lualineno_col') or 1
 local mark_attr = luatexbase and luatexbase.new_attribute('lualineno_mark') or 2
 local unset_attr = -0x7FFFFFFF

 We use the luakeyval module for the user interface
lualineno.lua

 local keyval = require('luakeyval')
 local scan_choice = keyval.choices
 local scan_bool = keyval.bool
 local process_keys = keyval.process
 local messages = {
 error1 = "lualineno: Wrong syntax in \\lualineno",
 value_forbidden = 'lualineno: The key "%s" does not accept a value',
 value_required = 'lualineno: The key "%s" requires a value',
 }

7

 Numbering Lines
 In here we define the main functions of the module, the functions that find and number the lines in a
 page.
 The following function is used to number a line that is considered “real” (i.e. has some
 glyphs in it that are not equation number or a big math delimiter). This function is used in the
 lualineno.numbering callback, so it can be replaced if desired.
 line is the hlist node representing the line, line_type is a lua table with the parameters defined in
 the define key according to the attribute and the column, offset is the total shift calculated from the
 start of the line and width is the width of the column containing the lines.

lualineno.lua

 local function number_line(line, line_type, offset, width, dir)

 local head = line.head
 local is_offset = line_type['offset']

 In case LATEX is used without the luacolor package, we add an additional group to make the
 boxes color safe. Since token.scan_string is ran in horizontal mode, the default box direction is
 \textdirection, and this can be pretty random at shipout time, so an explicit direction is specified.
 Currently LTR is used, if someone ask an option can be added, but you can always use \hbox bidr 1 {}
 inside the box.

lualineno.lua

 put_next({rbrace, rbrace})
 put_next(line_type.left)
 put_next({hbox,b,d,i,r,zero,lbrace,lbrace})
 put_next({rbrace, rbrace})
 put_next(line_type.right)
 put_next({hbox,b,d,i,r,zero,lbrace,lbrace})

 to make sure “right” always means right, we check the line direction.
lualineno.lua

 local end_box, start_box
 if line.dir == "TLT" then
 end_box = scan_list()
 start_box = scan_list()
 else
 start_box = scan_list()
 end_box = scan_list()
 end

 if the vertical list containing the line and the line has different directions we need to mirror the
 kerns as the kern means opposite direction then the shift, or alignment (similar to how \shapemode is
 working).

lualineno.lua

 local start_kern_width = 0
 local end_kern_width = 0
 if is_offset then
 if line.dir == dir then
 start_kern_width = offset
 end_kern_width = width - line.width - offset
 else
 start_kern_width = width - line.width - offset
 end_kern_width = offset
 end
 end

 if start_box.head then
 if start_kern_width ~= 0 then
 local start_kern = node_copy(base_kern)
 start_kern.kern = start_kern_width
 head = insert_before(head,head,start_kern)
 end
 head = insert_before(head,head,start_box)

8

 start_kern_width = -start_box.width - start_kern_width
 if start_kern_width ~= 0 then
 local start_kern = node_copy(base_kern)
 start_kern.kern = start_kern_width
 head = insert_before(head,head,start_kern)
 end
 else
 node_flush(start_box)
 end
 if end_box.head then
 if end_kern_width ~= 0 then
 local end_kern = node_copy(base_kern)
 end_kern.kern = end_kern_width
 head = insert_after(head,tail(head),end_kern)
 end
 head = insert_after(head,tail(head),end_box)
 else
 node_flush(end_box)
 end
 line.head = head
 end

 local lineno_callbacks
 if luatexbase then
 luatexbase.create_callback('lualineno.pre_numbering', 'simple', false)
 luatexbase.create_callback('lualineno.numbering', 'exclusive', number_line)
 luatexbase.create_callback('lualineno.post_numbering', 'simple', false)
 luatexbase.add_to_callback('lualineno.pre_numbering', function(_, line_type)
 runtoks(function() put_next(line_type['toks']) end)
 end, 'lualineno.runtoks')
 local call_callback = luatexbase.call_callback
 lineno_callbacks = function(line, line_type, offset, width, dir)
 call_callback('lualineno.pre_numbering', line, line_type, offset, width, dir)
 call_callback('lualineno.numbering', line, line_type, offset, width, dir)
 call_callback('lualineno.post_numbering', line, line_type, offset, width, dir)
 end
 else
 lineno_callbacks = function(line, line_type, offset, width, dir)
 runtoks(function() put_next(line_type['toks']) end)
 number_line(line, line_type, offset, width, dir)
 end
 end

 Not every object that would be considered a line from LuaTEX’s point of view would be considered
 a line from a human perspective. For example, a line containing only an indent box, or an alignment
 containing only rules, so we use the following two functions to search for a glyph node recursively, while
 ignoring boxes for equation number, for big delimiters (i.e. in cases environment) or dummy boxes for
 null delimiters.

lualineno.lua

 local function real_box(list)
 for n, id, sb in traverse(list) do
 if id == glyph_id then
 return true
 elseif (id == hlist_id or id == vlist_id) and not ignored_subtypes[sb] then
 if real_box(n.list) then
 return true
 end
 end
 end
 return false
 end

 If the first thing (that we care about) in a line is a glyph we simply number it, if it is an hlist we
 keep looking inside for glyphs and if it is a vlist we add the shift to the offset and go back to finding
 lines in that vlist.

lualineno.lua

9

 local function real_line(list, parent, offset)
 for n, id, sb in traverse(list) do
 if id == glyph_id then
 return true
 elseif id == vlist_id and not ignored_subtypes[sb] and real_box(n.list) then
 return n, offset + rangedimensions(parent, list, n)
 elseif id == hlist_id and not ignored_subtypes[sb] and real_box(n.list) then
 offset = offset + rangedimensions(parent, list, n)
 return real_line(n.list, n, offset)
 end
 end
 return false
 end

 This function finds the lines that needs to be numbered in a page. It should be used right be-
 fore shipout, but can be used on individual boxes using the processbox key if needed (maybe special
 numbering order is desired). When a line found, lineno_callbacks is called to number it.

lualineno.lua
 local find_line
 find_line = function(parent, list, column, offset, width)

 if get_attribute(parent, mark_attr) == lineno_marks.processed then return end
 set_attribute(parent, mark_attr, lineno_marks.processed)

 We need to keep track of the parent id to know if the .shift field represent horizontal or vertical
 displacement.

lualineno.lua

 local parent_is_vlist = parent.id == vlist_id
 for n, id, sb in traverse(list) do

 lines are hlists, so if a node is not one we dig deeper, while calculating the offset and the width.
 If a column is found, or a box marked with the anchor key then the offset is reset and the width is
 updated.

lualineno.lua

 if id ~= hlist_id then
 if not n.list then goto continue end
 local new_offset, new_width = offset, width
 local new_col = get_attribute(n, col_attr)
 if get_attribute(n, mark_attr) == lineno_marks.anchor or new_col then
 new_offset, new_width = 0, n.width
 elseif parent_is_vlist then
 new_offset = new_offset + n.shift
 end
 find_line(n, n.list, new_col or column, new_offset, new_width)
 goto continue
 end

 A line type is determined by the attribute of its last node so that line types can be switched from
 within the line (but maybe this should be configurable). The flag is a bitset that determines whether to
 number or recurse further.

lualineno.lua

 local line_attr = n.head and get_attribute(tail(n.head), type_attr)
 local line_type = line_attr and lineno_types[line_attr] and lineno_types[line_attr][column]
 local flag
 if sb == align_sub and get_attribute(n,mark_attr) == lineno_marks.display then
 flag = line_type and line_type[displayalign_sub]
 else
 flag = line_type and line_type[sb]
 end

 If a line does not have any attribute we don’t number it, be we do recurse further.
lualineno.lua

10

 local should_number = flag and (flag & LINENO_NUMBER) ~= 0 or false
 local should_recurse = flag and (flag & LINENO_RECURSE) ~= 0 or true
 if not (should_number or should_recurse) then
 goto continue
 end

 This is the case where a line should be numbered only once. Maybe someone would like to number
 alignment once, regardless of the fact the first column contains cells with paragraphs.

lualineno.lua

 if should_number and not should_recurse then
 if real_box(n.list) then
 local new_offset = parent_is_vlist and (offset + n.shift) or offset
 lineno_callbacks(n, line_type, new_offset, width, parent.dir)
 end
 goto continue
 end

 If real_line returned a new_offset, the first thing encountered in the line is a vlist, so we need
 to find lines inside of that vlist as well. As before offset and width might need to be updated. If we
 encounter a column, maybe this line contains more columns, so we number the first one and keep looking
 for more.

lualineno.lua

 local m, new_offset = real_line(n.head, n, offset)
 local new_width = width
 if new_offset then
 local new_col = get_attribute(m, col_attr)
 if get_attribute(m, mark_attr) == lineno_marks.anchor or new_col then
 new_offset, new_width = 0, m.width
 elseif parent_is_vlist then
 new_offset = new_offset + n.shift
 end
 find_line(m, m.head, new_col or column, new_offset, new_width)
 if new_col then
 find_line(n, n.head, new_col, new_offset, width)
 end
 goto continue
 end

 if not (m and should_number) then goto continue end

 A line is found! update the offset and number it.
lualineno.lua

 local new_offset = parent_is_vlist and (offset + n.shift) or offset
 lineno_callbacks(n, line_type, new_offset, width, parent.dir)

 ::continue::
 end
 end

 if not plain then
 luatexbase.add_to_callback('pre_shipout_filter', function(box)
 find_line(box, box.list, 1, 0, box.width)
 return true
 end, 'lualineno.shipout')
 end

 Check if inside display for display alignment
lualineno.lua

 if luatexbase then
 luatexbase.add_to_callback("buildpage_filter", function(info)
 if info == "before_display" then
 setattribute(mark_attr,lineno_marks.display)
 elseif info == "after_display" then
 setattribute(mark_attr,unset_attr)

11

 end
 end, "lualineno.indisplay")
 end

 Anchoring numbers to a box
lualineno.lua

 local function mark_last_vlist(n)
 local current = n
 while current do
 if current.id == vlist_id then
 set_attribute(current, mark_attr, lineno_marks.anchor)
 return true
 elseif current.id == hlist_id then
 if mark_last_vlist(tail(current.list)) then return true end
 end
 current = current.prev
 end
 return false
 end

 labels
lualineno.lua

 local make_label
 local function find_label(line)
 local list = line.list
 for n in traverse(list) do
 if n.id == glyph_id then
 local props = get_props(n)
 if props then
 local label = props.lualineno
 if label then
 make_label(label, list, n)
 end
 end
 elseif n.list then
 find_label(n)
 end
 end
 end

 local function label_last_glyph(m, tokens)
 if optex then
 luatexbase.add_to_callback('lualineno.pre_numbering', find_label, 'lualineno.labels')
 elseif latex then
 luatexbase.add_to_callback('lualineno.post_numbering', find_label, 'lualineno.labels')
 end
 label_last_glyph = function(n, toks)
 local current = n
 while current do
 if current.id == glyph_id then
 local props = get_props(current)
 if not props then
 props = { }
 set_props(current,props)
 end
 props.lualineno = toks
 return true
 elseif current.list then
 if label_last_glyph(tail(current.list), toks) then
 return true
 end
 end
 current = current.prev
 end
 return false
 end

12

 return label_last_glyph(m, tokens)
 end

 User Interface
 This section describes the definition of the one macro exposed to the end user. It is based on the luakeyval
 module.

lualineno.lua

 local defaults = {
 toks = { },
 left = { },
 right = { },
 box = {number = true, recurse = true},
 alignment = {number = true, recurse = true},
 displayalignment = {number = true, recurse = true},
 equation = {number = true, recurse = true},
 line = {number = true, recurse = true},
 offset = true,
 column = 1,
 }

 local inner_keys = {
 number = {scanner = scan_bool, default = true},
 recurse = {scanner = scan_bool, default = true}
 }

 local defaults_keys = {
 toks = {scanner = scan_toks},
 left = {scanner = scan_toks},
 right = {scanner = scan_toks},
 box = {scanner = process_keys, args = {inner_keys, messages}},
 alignment = {scanner = process_keys, args = {inner_keys, messages}},
 displayalignment = {scanner = process_keys, args = {inner_keys, messages}},
 equation = {scanner = process_keys, args = {inner_keys, messages}},
 line = {scanner = process_keys, args = {inner_keys, messages}},
 offset = {scanner = scan_bool},
 column = {scanner = scan_int}
 }

 local function set_defaults()
 local vals = process_keys(defaults_keys,messages)
 for k,v in pairs(vals) do
 defaults[k] = v
 end
 end

 local define_keys = { }
 for k,v in pairs(defaults_keys) do
 define_keys[k] = v
 end
 define_keys.name = {scanner = scan_string}

 local function define_lineno()
 local vals = process_keys(define_keys, messages)
 local name = vals['name']
 if not name then
 texerror("lualineno: Missing name when defining a lineno")
 return
 end

 local col = vals['column'] or defaults.column
 lineno_attrs[name] = lineno_attrs[name] or #lineno_types + 1
 local i = lineno_attrs[name]
 lineno_types[i] = lineno_types[i] or {}
 lineno_types[i][col] = lineno_types[i][col] or {}

 local c = lineno_types[i][col]

 local function store_type(key, subtype_id)

13

 local setting = vals[key] or defaults[key]
 local flags = 0
 if setting.number then flags = flags | LINENO_NUMBER end
 if setting.recurse then flags = flags | LINENO_RECURSE end
 c[subtype_id] = flags
 end

 store_type('box', box_sub)
 store_type('alignment', align_sub)
 store_type('equation', eq_sub)
 store_type('line', line_sub)
 store_type('displayalignment', displayalign_sub)

 c.toks = vals.toks or defaults.toks
 c.left = vals.left or defaults.left
 c.right = vals.right or defaults.right
 if vals.offset ~= nil then
 c.offset = vals.offset
 else
 c.offset = defaults.offset
 end
 end

 local lualineno_keys = {
 set = {scanner = scan_string},
 unset = { default = true },
 define = {scanner = function() return true end, func = define_lineno},
 defaults = {scanner = function() return true end, func = set_defaults},
 anchor = { default = true },
 label = {scanner = scan_toks, args = {false, true}},
 typeattr = {scanner = scan_int},
 colattr = {scanner = scan_int},
 markattr = {scanner = scan_int},
 processbox = {scanner = scan_int},
 }

 local function lualineno()
 local saved_endlinechar = tex.endlinechar
 tex.endlinechar = 32
 local vals = process_keys(lualineno_keys,messages)
 tex.endlinechar = saved_endlinechar
 if vals.set then
 local attr = lineno_attrs[vals.set]
 if attr then
 setattribute(type_attr, attr)
 else
 texerror("lualineno: type '" .. vals.set .. "' undefined")
 end
 end
 if vals.unset then
 setattribute(type_attr, unset_attr)
 end
 if vals.anchor then
 for i=texnest.ptr,0,-1 do
 if mark_last_vlist(texnest[i].tail) then return end
 end
 end
 if vals.label then
 for i=texnest.ptr,0,-1 do
 if label_last_glyph(texnest[i].tail, vals.label) then return end
 end
 end
 type_attr = vals.typeattr or type_attr
 col_attr = vals.colattr or col_attr
 mark_attr = vals.markattr or mark_attr
 if vals.processbox then
 local box = tex.box[vals.processbox]
 local col = get_attribute(box, col_attr)
 find_line(box, box.head, col or 1, 0, box.width)
 end

14

 end

 do
 if token.is_defined('lualineno') then
 texio.write_nl('log', "lualineno: redefining \\lualineno")
 end
 local function_table = lua.get_functions_table()
 local luafnalloc = luatexbase and luatexbase.new_luafunction
 and luatexbase.new_luafunction('lualineno') or #function_table + 1
 token.set_lua('lualineno', luafnalloc, 'protected')
 function_table[luafnalloc] = lualineno
 end

 Format Specific Code
lualineno.lua

 if format == 'optex' then

 To be able to use OpTEX’s color mechanism in line numbers the colorizing needs to happen af-
 ter line numbers are added, so we remove and insert back again the colorizing function from the
 pre_shipout_filter callback.

lualineno.lua

 local colorize = callback.remove_from_callback('pre_shipout_filter', '_colors')
 callback.add_to_callback('pre_shipout_filter', colorize, '_colors')

 This is the patch for \beginmulti in order mark the columns boxes. For each box we assign an
 attribute with a value according to the column number.

lualineno.lua

 local replace = table.concat({
 "_directlua{",
 "local column = tex.splitbox(6, tex.dimen[1], 'exactly') ",
 "local num = tex.count['_tmpnum'] ",
 "local attr = luatexbase.attributes['lualineno_col'] ",
 "node.set_attribute(column, attr, num) ",
 "node.write(column) ",
 "}",
 })
 local find = [[_vsplit 6 to_dimen 1]]
 local patch, success = token.get_macro("_createcolumns"):gsub(find, replace)

 Log the success or failure of the patch
lualineno.lua

 if success > 0 then
 token.set_macro("_createcolumns", patch)
 else
 texio.write_nl('log', "lualineno: failed to patch _createcolumns")
 end

 OpTEX only needs to run \label[toks] before a destination to label it.
lualineno.lua

 local lbracket = new_tok(string.byte('['), token.command_id'other_char')
 local rbracket = new_tok(string.byte(']'), token.command_id'other_char')
 local label_tok = create('_label')
 make_label = function(label)
 runtoks(function()
 put_next({rbracket})
 put_next(label)
 put_next({label_tok,lbracket})
 end)
 end

 elseif latex then

15

 Here we mark the columns according to \if@firstcolumn
lualineno.lua

 local true_mode do
 local prefix = '@lua^line&no_'
 while token.is_defined(prefix .. 'iftrue') do
 prefix = prefix .. '@lua^line&no_'
 end
 tex.enableprimitives(prefix,{'iftrue'})
 local tok = create(prefix .. 'iftrue')
 true_mode = tok.mode
 end

 luatexbase.add_to_callback('pre_output_filter', function()
 if create('if@firstcolumn').mode == true_mode then
 setattribute(col_attr, 1)
 else
 setattribute(col_attr, 2)
 end
 return true
 end, 'lualineno.mark_columns')
 luatexbase.add_to_callback('buildpage_filter', function(info)
 if info == 'after_output' then
 setattribute(col_attr, unset_attr)
 end
 end, 'lualineno.mark_columns')

 If the luacolor package is loaded, colorizing must happen after line numbers are added to be able to
 color them.

lualineno.lua

 luatexbase.declare_callback_rule('pre_shipout_filter',
 'lualineno.shipout', 'before', 'luacolor.process')

 Since LATEX isn’t really shipping out the page box, but a box containing the \topmargin and the
 page box which is shifted with \moveright, so it adds an undesired offset in find_line, so we mark the
 page box as anchor.

lualineno.lua

 local attr_num = luatexbase.attributes['lualineno_mark']
 local replace = string.format([[\moveright \@themargin \vbox attr %d = -1]], attr_num)
 local find = [[\moveright \@themargin \vbox]]
 local patch, num_subs = token.get_macro("@outputpage"):gsub(find, replace)

 space controls are changed as well to avoid a bug in token.set_macro
lualineno.lua

 find = [[\catcode `\ 10\relax \catcode `\ 10\relax]]
 replace = [[\catcode 32=10\relax \catcode 9=10\relax]]
 patch, num_subs = patch:gsub(find, replace)

 Log the success or failure of the patch
lualineno.lua

 if num_subs > 0 then
 token.set_macro("@outputpage", patch)
 else
 texio.write_nl('log', "lualineno: failed to patch \\@outputpage")
 end

 LATEX’s \label’s creates a whatsit node (\write), so we temporarily box the label to fetch this
 node, and add it to the list.

lualineno.lua

 local label_tok = create('label')
 make_label = function(label, list, n)

16

 runtoks(function()
 put_next({rbrace,rbrace})
 put_next(label)
 put_next({hbox, lbrace, label_tok,lbrace})
 local label_node = scan_list()
 list = insert_after(list,n,node_copy(label_node.head))
 node_flush(label_node)
 end)
 end

 end

 5.2 OpTEX package
 The OpTEX package does not contain much. It is mainly here for the documentation, or in case someone
 prefers to type \load[lualineno] instead of \directlua{require('lualineno')}.

lualineno.opm
 _codedecl \lualineno {Line numbering <0.1, 2026-02-12>}

 _directlua{require('lualineno')}
 \addto_resetattrs{\lualineno{unset}}

 5.3 LATEX package
 The LATEX package mostly contains patches to other packages to mark the column boxes.

lualineno.sty
 \ProvidesPackage
 {lualineno} [2026-02-12 v0.1
 Line numbering in LuaTeX]

 \directlua{require('lualineno')}
 \AddToHook{build/page/reset}{\lualineno{unset}}

 \AddToHook{package/multicol/after}{%
 \directlua{

 local replace = "\csstring\\\csstring\\directlua {
 local right_box = token.create('mult@rightbox').index
 local col_attr = luatexbase.attributes['lualineno_col']
 local i = right_box
 local last = tex.count['doublecol@number'] - 2
 local column = 0
 while i < last do
 i = i + 2
 column = column + 1
 tex.box[i][col_attr] = column
 end
 tex.box[right_box][col_attr] = column + 1}\csstring\\\csstring\\mc@align@columns"
 local find = "\csstring\\\csstring\\mc@align@columns"
 local patch, success = token.get_macro("page@sofar"):gsub(find, replace)
 if success > 0 then
 token.set_macro("page@sofar", patch)
 else
 texio.write_nl('log', "lualineno: failed to patch
 \csstring\\\csstring\\page@sofar (multicol)")
 end}}

 \AddToHook{package/balance/after}{%
 \expandafter\renewcommand\expandafter
 \@BAlancecol\expandafter{\@BAlancecol\directlua{
 local sec_col = token.create('@outputbox').index
 local first_col = token.create('@leftcolumn').index
 local col_attr = luatexbase.attributes['lualineno_col']
 tex.box[sec_col][col_attr] = 2
 tex.box[first_col][col_attr] = 1}}}

 \AddToHook{package/flushend/after}{%
 \directlua{

17

 local replace = "\csstring\\\csstring\\set@outputbox@with@footnote@and@float
 \csstring\\\csstring\\fi \csstring\\\csstring\\directlua {
 local sec_col = token.create('@outputbox').index
 local first_col = token.create('@leftcolumn').index
 local col_attr = luatexbase.attributes['lualineno_col']
 tex.box[sec_col][col_attr] = 2
 tex.box[first_col][col_attr] = 1}"
 local find = "\csstring\\\csstring\\set@outputbox@with@footnote@and@float
 \csstring\\\csstring\\fi "
 local patch, success = token.get_macro("last@outputdblcol"):gsub(find, replace)
 if success > 0 then
 token.set_macro("last@outputdblcol", patch)
 else
 texio.write_nl('log', "lualineno: failed to patch
 \csstring\\\csstring\\last@outputdblcol (flushend)")
 end}}

 \AddToHook{package/ltxgrid/after}{%
 \def\box@column#1{%
 \ltxgrid@info@sw{\class@info{\string\box@column\string#1}}{}%
 \raise\topskip
 \hb@xt@\columnwidth\bgroup
 \dimen@\ht#1\@ifdim{\dimen@>\@colht}{\dimen@\@colht}{}%
 \count@\vbadness\vbadness\@M
 \dimen@ii\vfuzz\vfuzz\maxdimen
 \ltxgrid@info@sw{\saythe\@colht\saythe\dimen@}{}%
 \vtop attr \directlua{tex.print(luatexbase.attributes['lualineno_col'])}
 = \pagegrid@cur to\dimen@\bgroup
 \hrule\@height\z@
 \unvbox#1%
 \raggedcolumn@skip
 \egroup
 \vfuzz\dimen@ii
 \vbadness\count@
 \hss
 \egroup
 }}

 \AddToHook{package/breqn/after}{%
 \directlua{
 local replace = "\csstring\\\csstring\\directlua {
 local box = tex.getbox('EQ@numbox')
 if box then
 local n = node.copy_list(box)
 n.subtype = 7
 node.write(n)
 end}"
 local find = "\csstring\\\csstring\\copy \csstring\\\csstring\\EQ@numbox "
 local function patch_breqn(macro)
 local patch, success = token.get_macro(macro):gsub(find, replace)
 if success > 0 then
 token.set_macro(macro, patch)
 else
 texio.write_nl('log', "lualineno: failed to patch
 \csstring\\\csstring\\" .. macro .. " (breqn)")
 end
 end
 patch_breqn("eq@typeset@RShifted")

 patch_breqn("eq@typeset@LShifted")
 patch_breqn("eq@typeset@rightnumber")
 patch_breqn("eq@typeset@leftnumber")
 }}

 \endinput

18

	Lua-Lineno
	Contents
	Loading lualineno
	User Interface
	Defining a Lineno
	Notes For Plain Users

	Examples
	Number Lines Across the Document
	Number Lines Per Page
	Number Two Column Layout
	Modulo
	Reference a Line
	Link to a Line
	Ignore Line Numbers When Copying Text
	The offset and anchor Keys

	Callbacks
	Implementation
	Lua module
	OpTeX package
	LaTeX package

