
The toolbox package∗

Martin Väth†‡

2013/11/26

Abstract

The TEX programmer’s toolbox; enhanced version. This package pro-

vides some macros which are convenient for writing indices, glossaries, or

other macros. It contains macros which support

• implicit macros – a useful supplement to \index or varindex for writing

glossaries or indices.

• fancy optional arguments

• loops over tokenlists and itemlists

• searching, splitting, and replacing

• controlled expansion

• redefinition of macros

• concatenated macro names

You may copy this package freely, as long as you distribute only unmodified and
complete versions.

Contents

1 Changes 2

2 Installation 3

∗This package has version number 5.1, last revised 2004/04/29. The package may be dis-
tributed and/or modified under the conditions of the LaTeX Project Public License, either ver-
sion 1.3c of this license or (at your option) any later version. The latest version of this license is
in http://www.latex-project.org/lppl.txt, and version 1.3c or later is part of all distributions
of LaTeX version 2005/12/01 or later.

†martin@mvath.de
‡The author thanks David Kastrup <David.Kastrup@neuroinformatik.ruhr-uni-bochum.de>.

1

3 Description of the macros 4

3.1 Implicit macro definitions . 4
3.2 Fancy optional argument parsing 8
3.3 Loops over tokenlists and itemlists 11
3.4 Controlled expansion . 13
3.5 Searching, splitting, and replacing 14
3.6 Redefinition of macros . 15
3.7 Concatenated macro names . 16
3.8 Various . 17

1 Changes

v5.1 (2013/11/26) Update email, add license. Date/version remains the same
since only commments and documentation are modified.

v5.1 (2004/04/29) Added \toolboxReplace, \toolboxReplaceSplit. Some
corrections in the documentation. Added some forgotten \long’s in the
code..

v4.4 (2003/10/07) Added \toolboxIfEmpty, \toolboxIfx, \toolboxIfX,
\toolboxIfElse. Some corrections in the documentation.

v4.3 (2002/09/27) Major enhancements in documentation: Added lots
of examples and explanation about typical applications. Bug-
fix in \toolboxMakeDef: \〈Prefix 〉Provide〈Name〉 now behaves like
\providecommand as documented. The old meaning is now called
\〈Prefix 〉Def〈Name〉. Introduced \toolboxGobbleArg.

v4.2 (2001/09/26) Treating # properly now also in \toolboxMakeDef.

v4.1 (2001/09/24) Took more care of treating # properly when this sym-
bol occurs in arguments of certain macros (the treatment is not
completely downward compatible; for this reason the major re-
lease number has been changed). For this reason, also the
new macro \toolboxTokDef is provided. I thank David Kas-
trup <David.Kastrup@neuroinformatik.ruhr-uni-bochum.de> for point-
ing out this problem (and a solution) to me.

v3.3 (2001/08/19) Eliminated a bug in \toolboxMakeSplit*.

v3.2 (2001/05/08) Eliminated a serious bug in \toolboxIf. Due to this bugfix,
the usage of \toolboxIf had to be slightly restricted.

v3.1 (2001/05/06) Major advantage: \toolboxMakeDef implemented.

Reimplemented \newif (apparently by mistake, this had been declared
as \outer in TEX and LATEX2.09 which caused an error during load-
ing of toolbox.sty). For this reason, also \toolboxNewifTrue and
\toolboxNewifFalse were introduced.

2

v2.1 (2001/04/30) Introduced \toolboxIf, \toolboxAppend, and
\toolboxSurround.

v2.0 (2001/04/08) Many major enhancements and new tools: Added sec-
tion (and corresponding macros) for fancy optional arguments. Made
\toolboxLoop semi-reentrant by introducing \toolboxLoopName. Added
\toolboxTokenLoop and friends. Added \toolboxSpaceToken. Made
many macros \long and added \long versions of \toolboxSplitAt and
\toolboxMakeSplit.

v1.0 (2001/03/29) First release.

2 Installation

This package was tested with TEX, LATEX2.09, and LATEX2ε, and it should actually
run with all other TEX formats.
To use toolbox, you have to put the file toolbox.sty in a path where TEX
looks for its input files. The TEX documents using toolbox need the following
modifications in their header:

• If you use LATEX2ε, put in the preamble the command

\usepackage{toolbox}

• If you use LATEX2.09, use toolbox as a style option, e.g.

\documentstyle[toolbox]{article}

or

\documentstyle[toolbox,12pt]{article}

• If you use some other (non-LATEX) format, you will probably have to insert
a line like

\catcode‘\@=11\input toolbox.sty\catcode‘\@=12\relax

The only LATEX-specific commands used in toolbox.sty are:

• \newcommand (used only in the form \newcommand{〈command〉}{} to ensure
that 〈command〉 was not defined before)

• \ProvidesPackage

• \typeout

The above commands are used only if they are defined.

3

3 Description of the macros

General remark: Many macros could appear in several sections. For example,
\toolboxMakeDef and \toolboxSourroundmight be considered as macros which
support redefinitions of macros. However, we put them in different sections which
perhaps explain better their nature.

3.1 Implicit macro definitions

What we mean by implicit macro definitions is probably best explained by the
following examples which show the intended usage:

(In the following examples, we always refer to the \index command. Note that
it may be more convenient to use for indices the varindex package in addition –
the documentation of varindex (release 2.3 or newer) gives additional hints and
examples how these two (essentially independent) approaches can be combined in
practice).

Assume that you want to write an index for a book which has rather long and
complicated \index entries. The first idea that one might have in this connection is
to put the various \index commands at the beginning of the document into several
macros (one for each \index entry), and to use just these macros in the main
text. For example, one might want to write near the beginning of the document
commands like

\newcommand{\Start}{\index{finish or end}}

\newcommand{\End}{\index{finish or end}}

and then to use in the main text \Start and \End whenever a reference in the
corresponding index to the current place is desired. However, this has two major
disadvantages:

1. It is easy to forget that \End writes an index entry. So the macro \End in
the main text might be very confusing.

2. You cannot choose short and intuitive macro names for common phrases,
because they are usually already reserved by TEX, LATEX, or some packages.
For example, \end could not be used.

To avoid these problems, one may be very disciplinary and call the involved macros
systematically e.g. \GlossaryStart \GlossaryEnd etc. However, this produces
terrible long and unreadable macro names in the main text.

The implicit macro definitions of toolbox provide a more convenient solution. The
idea is that you do not use the corresponding macros directly but only implicitly
by a call of other macros where your “macro name” is just an argument.
Moreover, toolbox assists you in writing the corresponding definitions. For ex-
ample, if you know that you want a set of macros which all expand into something

4

of the form \index{...}, you can give a “mask” which contains this form, and
you only have to fill in the changing content (similarly as for usual TEX macros
with arguments, but the level of abstraction is one step higher). For the above
task, you might use the command:

\toolboxMakeDef{Glossary}{\index{#1}}

The argument Glossary serves to distinguish independent definitions (this will
become clear later). Its effect visible now is that it determines the name of the
following macros which you can use after the above call:

\NewGlossary{start-1}{start}

\NewGlossary{start-2}{start or beginning}

\NewGlossary{end}{finish or end}

These command are now similar to the \newcommand definitions explained above.
However, there is no name collision with the TEX-internal command \end. Of
course, this means that you cannot just write \end in the main text to get the
desired index entry. Instead, you have to write the more intuitive commands

\Glossary{start-1}

\Glossary{start-2}

\Glossary{end}

(again, the name \Glossary stems from our first call of \toolboxMakeDef).
Note that e.g. \Glossary{start-1} expands not only to start but actually to
\index{start} (because of our first call of \toolboxMakeDef).
Note also that you can use symbols like “-” or numbers which are usually not
allowed in TEX macro names.
Of course, similarly as for \newcommand, you can also do other things with the
macros. For example,

\LetGlossary\tempname{end}

\NewGlossary*{finish}\tempname

will first define \tempname to expand to the same text as \Glossary{end}, and
then defines a new entry \Glossary{finish} to expand to the same text as
\tempname. Hence, the above two lines make the calls \Glossary{end} and
\Glossary{finish} equivalent.
At the end of your list of \NewGlossary commands, you might want to put

\toolboxFreeDef*{Glossary}

The purpose of this command is that \NewGlossary cannot be used anymore
(unless, of course, you define it again). So you cannot unintentionally add new
entries to your glossary list (but you still can use \Glossary{...} to reference to
the already produced entries). Moreover, the above command frees some memory
which was needed for \NewGlossary to work.
If you additionally want to free the memory used by \Glossary, you can use

\toolboxFreeDef{Glossary}

5

(without the *). This may be necessary, if you want to call again e.g.

\toolboxMakeDef{Glossary}{\emph{#1}\index{#1}}

(if you have not freed the memory for \Glossary before this repeated call, TEX
will complain that \Glossary is already defined).

Of course, it is possible to call \toolboxMakeDef with several different names,
for example, for \Glossary, \SymbolList etc. Another application might be to
use a different command to mark e.g. the main occurrence of some index entry
or to output additionally the entry into the running text. We do this in the
following example which simultaneously demonstrates that the names can also be
constructed in another way:

\toolboxMakeDef[Ind]{}{\index{#1}}

\toolboxMakeDef[Ind]{Main}{\index{#1|textbf}}

\toolboxMakeDef{OutInd}{#1}

\IndNew{A}{A is a letter}

\IndNewMain{A}{A is a letter}

\NewOutInd{A}{\textbf{The letter A}\Ind{A}}

After the above commands, you can use \Ind{A}, \IndMain{A}, and \OutInd{A}

to produce the corresponding \index entry, the “main” \index entry (with a fat
page number), and the text The letter A with an additional entry into the index,
respectively. Of course, it might usually be more convenient to define the \Ind

and \IndMain entries simultaneously, e.g. by the commands

\toolboxMakeDef[Ind]{}{#1}

\toolboxMakeDef[Ind]{Main}{#1}

\newcommand{\NewStandardInd}[2]{%

\IndNew{#1}{\index{#2}}%

\IndNewMain{#1}{\index{#2|textbf}}}

\NewStandardInd{A}{A is a letter}

This approach has the additional advantage that you can define exceptional cases
“by hand” (e.g. if you want that for certain “main” index entries the page number
is printed with \textsl instead of \textbf).

Since the motivation for implicit definitions now is hopefully clear, let us now
describe in detail which commands are provided by toolbox for this purpose. As
explained in the example, the main generic macro provided to this purpose is
\toolboxMakeDef. Its call syntax is as follows:\toolboxMakeDef

\toolboxMakeDef[〈Prefix〉]{〈Name〉}{〈Replacement mask〉}

(the argument [〈Prefix 〉] is optional and by default empty). The above command
generates new macros

6

\〈Prefix 〉New〈Name〉
\〈Prefix 〉Renew〈Name〉
\〈Prefix 〉Provide〈Name〉
\〈Prefix 〉Def〈Name〉
\〈Prefix 〉Let〈Name〉
\〈Prefix 〉〈Name〉

which in turn can be called as follows:

\〈Prefix 〉New〈Name〉{〈something〉}{〈text to remember〉}
\〈Prefix 〉Renew〈Name〉{〈something〉}{〈text to remember〉}
\〈Prefix 〉Provide〈Name〉{〈something〉}{〈text to remember〉}
\〈Prefix 〉Def〈Name〉{〈something〉}{〈text to remember〉}
\〈Prefix 〉New〈Name〉*{〈something〉}\〈SomeMacro〉
\〈Prefix 〉Renew〈Name〉*{〈something〉}\〈SomeMacro〉
\〈Prefix 〉Provide〈Name〉*{〈something〉}\〈SomeMacro〉
\〈Prefix 〉Def〈Name〉*{〈something〉}\〈SomeMacro〉
\〈Prefix 〉Let〈Name〉\〈SomeMacro〉{〈something〉}
\〈Prefix 〉〈Name〉{〈something〉}
\〈Prefix 〉〈Name〉*{〈something〉}

These calls are in a sense similar to the respective commands

\newcommand{\〈something〉}{〈text to remember〉}
\renewcommand{\〈something〉}{〈text to remember〉}
\providecommand{\〈something〉}{〈text to remember〉}
\def\〈something〉{〈text to remember〉}
\newcommand{\〈something〉}{}\let\〈something〉\〈SomeMacro〉
\renewcommand{\〈something〉}{}\let\〈something〉\〈SomeMacro〉
\@ifundefined{〈something〉}{\let\〈something〉\〈SomeMacro〉}{}
\let\〈something〉\〈SomeMacro〉
\let\〈SomeMacro〉\〈something〉
\〈something〉
\〈something〉 (but without error if \〈something〉 is undefined)

with the differences already pointed out before:

1. The macro name actually used is not \〈something〉. Instead, it is a name
which does not conflict with any existing macro (except one generated pre-
viously by another \〈Prefix 〉New〈Name〉, but in this case a descriptive error
is reported).

For this reason, it is not possible to use this macro directly but only indirectly
by the call \〈Prefix 〉〈Name〉{〈something〉} (or with \〈Prefix 〉Let〈Name〉).

2. The replacement text is not 〈text to remember〉 but determined by
〈Replacement Mask〉 where every occurrence of #1 in 〈Replacement Mask〉
is replaced by 〈text to remember〉 (recall the examples). If you want to have
the plain 〈text to remember〉, use {#1} as 〈Replacement Mask〉.

7

Since toolbox 4.2 there is another slight difference: The symbol # is treated as
usual and not as in a macro definition.
\toolboxMakeDef gives an error message if the commands \〈Prefix 〉... are al-
ready defined. If you intentionally want to change a previous definition, you have
to call the command

\toolboxFreeDef[〈Prefix〉]{〈Name〉}\toolboxFreeDef

before. The latter not only lets all of the macros \〈Prefix 〉... be \undefined,
but also frees all other memory internally used by the corresponding call of
\toolboxMakeDef (note, however, that the above command does not free the
memory allocated before by calls of \〈Prefix 〉New... – to free the latter, you have
to call subsequently e.g.

\〈Prefix 〉New〈Name〉*{. . .}{\undefined}

before). There is also the command

\toolboxFreeDef*[〈Prefix 〉]{〈Name〉}

which acts similarly as \toolboxFreeDef but which does not undefine the two
macros \〈Prefix 〉〈Name〉 and \〈Prefix 〉Let〈Name〉.

3.2 Fancy optional argument parsing

This section contains macros which are convenient if you e.g. write a package
that contains macros which contain a lot of optional arguments and flags (like *).
Typically, to read such an optional argument or flag, you save the next token with
\futurelet and then call a macro which decides what to do with the token read.
Thus, a typical use of \futurelet looks like

\def\MacroWithOptionalFlag{\futurelet\tokread\myscan}

which will define \tokread to be the token following the macro
\MacroWithOptionalFlag in the token stream and then execute \myscan.
In this context, it is not very convenient that you are forced to define a macro
\myscan: It could be more convenient if you could just write the content of
\tokread (in braces) into the above definition. You can indeed do this if you
replace \futurelet by \toolboxFuturelet:\toolboxFuturelet

\toolboxFuturelet\token{〈argument〉}

The call \toolboxFuturelet\token{\command} has precisely the same effect as
\futurelet\token\command. The advantage of \toolboxFuturelet is that in-
stead of a single \command one may use also a sequence of commands.
Let us consider \MacroWithOptionalFlag as above. Assume that the user has
called this macro in the form \MacroWithOptionalFlag* where the * is a flag
which should cause your macro to do something slightly different. On some
place in your macro definition you will have recognized (e.g. with \futurelet

8

or \toolboxFuturelet) that a * is following in the calling sequence. So you now
want to execute your action (whatever \MacroWithOptionalFlag is supposed to
do). However, if you do not take special care, after this action, TEX will print a *,
because this is the next token on the token stream: \futurelet does not delete
any tokens. So you have to “gobble” this token away. A rude way to do this is by
using the macro \gobblenext as the last token in you macro which can be defined
by

\def\gobblenext#1{}

However, this has two major drawbacks:

1. This works for *, but not for { or space tokens. For space tokens the situation
is even worse, since TEX eats spaces around arguments, so sometimes space
tokens might unexpectedly disappear.

2. It is not possible in this way to read another argument following the *: Recall
that \gobblenext must be the last token in your macro expansion, i.e. you
have “lost control” after this call.

The solution to these problems is instead of calling \gobblenext to use
\toolboxGobbleNext as the last command in your call: You can pass it an ar-\toolboxGobbleNext

gument which describes the action that you want to do after gobbling the next
token (* in the above example) from the token stream. Thus

\toolboxGobbleNext{〈cmd〉}

erases the token following that command from the token stream and then executes
〈cmd〉. This is similar to

\def\toolboxGobbleNext#1#2{#1}

with the difference that #2 is considered as a token and that no spaces are eaten.
The effect is that e.g. the call

\toolboxGobbleNext{\foo}{{arg}

is the same as \foo{arg} (the brace { is eaten in this example).
As described earlier, the commands \futurelet or \toolboxFuturelet can be
used to check for optional flags. Frequently you will only want to test for one
particular flag and decide the next action on this flag. Of course, you can test the
token found with \ifx...\fi but this has the disadvantage that some tokens (e.g.
\fi) follow your action, which might be bad (recall that e.g. \toolboxGobbleNext
must be the last command of your action, i.e. it would in the above examples not
gobble the * but the \fi which is probably not what you want). The simplest
solution is to use the command \toolboxIfNextToken which already has the test\toolboxIfNextToken

included. For example, to test for an optional [, you can simply write

\def\MacroWithOptionalBrace{\toolboxIfNextToken[{\yes}{\no}}

9

and then the call \MacroWithOptionalBrace[...] will expand to \yes[...]

while \MacroWithOptionalBrace x will expand to \no x (note that the brace
is not gobbled—if you want the latter, use \toolboxIfNextGobbling described
below).
More precisely, the calling syntax of \toolboxIfNextToken is

\toolboxIfNextToken{〈token〉}{〈if 〉}{〈else〉}\toolboxIfNextToken

The semantic is the following: If the token following this command is 〈token〉,
then 〈if 〉 is executed, otherwise 〈else〉. It is explicitly admissible that 〈token〉 is
a space. To support further tests, \toolboxToken is \let to the token which\toolboxToken

follows the command. \toolboxToken is only a temporary token, i.e. it may also
be modified by other commands of this package; in particular, you may also freely
modify \toolboxToken.
The token \toolboxSpaceToken which is described later may be handy in con-
nection with this command.
In contrast to similar LATEX2ε macros much care has been taken that spaces are
not eaten. This solves the following problem:
Assume that you want to write a macro which should have the calling syn-
tax \mymacro{arg1} or \mymacro{arg1}[arg2]. You will probably implement
\mymacro to read the first argument and then to look whether the next to-
ken is a [. If you use the LATEX2ε macro to test for [, then all spaces
until the next non-space token would be gobbled which means that if you
would use the LATEX2ε macros for the test, then the call \mymacro{arg1} Text

would behave like \mymacro{arg1}Text, i.e. the space is “mysteriously” lost.
With the toolbox macros this does not happen. The “disadvantage” is that
\mymacro{arg1} [arg2] is not the same as \mymacro{arg1}[arg2] either (which
is reasonable IMHO).
Example:

\def\mycmd#1{\toolboxIfNextToken[{\ParseOpt{#1}}{\NoOpt{#1}}}

\def\ParseOpt#1[#2]{\OptAtEnd{#1}{#2}}

After the above definition, \mycmd{arg} executes \NoOpt{arg} while
\mycmd{arg}[optional] executes \OptAtEnd{arg}{optional}. We point out
once more that in the first call a space following \mycmd{arg} does not vanish (as
would be the case if the LATEX2ε macros would have been used).
If \toolboxIfNextToken has found the required token, it does not gobble that
token from the token stream. Of course, you can do this by yourself using the
earlier described macro \toolboxGobbleNext. However, it is simpler to use

\toolboxIfNextGobbling{〈token〉}{〈if 〉}{〈else〉}\toolboxIfNextGobbling

This command is analogous to \toolboxIfNextToken with the difference that in
the case that the next token is 〈token〉, it is gobbled before 〈if 〉 is executed.
Example:

\def\my{\toolboxIfNextGobbling*\toolboxTokenLoop\toolboxLoop}

10

This makes \my*... behave like \toolboxTokenLoop... and \my... (without *)
behave like \toolboxLoop....
The following macro is one which you may want to use in connection with LATEX2e
optional arguments:

\toolboxIfEmpty{〈arg〉}{〈if 〉}{〈else〉}\toolboxIfEmpty

〈arg〉 is not expand; it is only used to decide whether 〈if 〉 or 〈else〉 will be ex-
panded.
For further tests there are more involved macros:

\toolboxIfx{〈arg〉}\macro{〈if 〉}{〈else〉}\toolboxIfx

This tests via \ifx whether \def\Macro{〈arg〉} would give the definition of
\macro.

\toolboxIfX{〈arg 1 〉}{〈arg 2 〉}{〈if 〉}{〈else〉}\toolboxIfX

This tests whether 〈arg 1 〉 and 〈arg 2 〉 are the same token sequences.
If you want to avoid the \else and \fi commands to avoid certain side effects,
you can use instead:

\toolboxIfElse{〈ifcmd〉}{〈if 〉}{〈else〉}\toolboxIfElse

This is rather analogous to 〈ifcmd〉〈if 〉\else〈else〉\fi but has everything in this
line already eliminated from the tokenlist when 〈if 〉 resp. 〈else〉 are expanded.

3.3 Loops over tokenlists and itemlists

\toolboxLoop{〈items〉}{〈action〉}\toolboxLoop

This calls iteratively 〈action〉{#1}, where #1 runs over each item in 〈items〉. Here,
an item is either a token or a group braced by {...}. In the latter case, the braces
are lost. Spaces in 〈items〉 are ignored (unless they are braced). It is admissible
that 〈action〉 is not a single macro but instead a sequence of tokens.
Examples follow below.
The counterintuitive order of arguments is explained by the fact that the typical
usage is

\expandafter\toolboxLoop\expandafter{\ExpandingMacro}{〈action〉}

which for swapped order of arguments could hardly be written.
\toolboxLoop is not reentrant, i.e. {〈action〉} may not expand to something which
contains a call to \toolboxLoop. To enable such calls anyway, the command

\toolboxLoopName{〈name〉}{〈items〉}{〈action〉}\toolboxLoopName

11

is provided which is analogous to \toolboxLoopName. This is also not reentrant,
but in contrast to \toolboxLoop, calls with different 〈name〉 can be used in-
dependently of each other, i.e. in the {〈action〉} part of a \toolboxLoop (or
\toolboxLoopName) can be a call to \toolboxLoopName with a different 〈name〉
argument. In particular, using a counter in 〈name〉, one could easily imple-
ment even recursive calls. In this connection, it should be noted that 〈name〉
is expanded via \csname ... \endcsname, and so you may use constructs like
\the\namecounter there.

\toolboxTokenLoop{〈tokens〉}{〈action〉}\toolboxTokenLoop

This is similar to \toolboxLoop: The command 〈action〉\toolboxToken is ex-
ecuted iteratively where \toolboxToken runs over each token in 〈tokens〉. The
important difference is that \toolboxToken is a token (instead of an item). In
particular, \toolboxToken runs through every single token including spaces and
braces.
The token \toolboxSpaceToken which is described later may be handy in con-
nection with this command.
Example:

\toolboxTokenLoop{Some text}{\kern0.1em}

is the similar to \kern0.1em S\kern0.1em o\kern0.1em m..., i.e. you get wider
spacing between the letters of Some text (I do not claim that this is typographi-
cally a good idea).
Note that you do not have to take special care about the space. With
\toolboxLoop, you would have to mask the space e.g. with

\toolboxLoop{Some{ }text}{\kern0.1em}

or

\toolboxLoop{Some\toolboxSpace text}{\kern0.1em}

In contrast, \toolboxTokenLoop would behave differently here:

\toolboxTokenLoop{Some{ }text}{\kern0.1em}

would produce \kern0.1em S...\kern0.1em{\kern0.1em \kern0.1em}... be-
cause the braces are simply considered as tokens.
\toolboxTokenLoop is not reentrant. Analogously to \toolboxLoopName, inde-
pendent versions can be generated by

\toolboxTokenName{〈name〉}{〈tokens〉}{〈action〉}\toolboxTokenName

12

3.4 Controlled expansion

There are some occasions when you want more control over the expansion. E.g.
you might want to concatenate the contents of two macros to a further macro or
you want to expand a macro by one level but no full expansion. Usually you can
get this effects with \expandafter, but if you expand several concatenated tokens
in this way you either have to write a lot of \expandafters or you have to define
subsidiary macros that help you to \expandafter certain parts of macros. The
macros in this section allow you to do this in the most generic way that I could
implement.

\toolboxDef\macrotodefine{〈argumentlist〉}\toolboxDef

This call is similar to

\def\macrotodefine{〈argumentlist〉}

with two important differences:
For \toolboxDef, 〈argumentlist〉 is expanded precisely by one level.
〈argumentlist〉 may not contain macros with parameters, and spaces in the highest
level are ignored. If you want to force a space on a particular place, use the macro
\toolboxSpace at this place (which is described later). Contrary to the usual\toolboxSpace

\def, the symbol # is treated as a usual symbol.
Example of usage:

\toolboxDef\chain{\chain\toolboxSpace\after}

This modifies the macro \chain such that a space and the content of the macro
\after is appended at the end.

\toolboxAppend\macrotodefine{〈argumentlist〉}\toolboxAppend

This is equivalent to

\toolboxDef\macrotodefine{\macrotodefine〈argumentlist〉}

The macro

\toolboxSurround{〈content before〉}{〈content after〉}\macro\toolboxSurround

redefines \macro such that 〈content before〉 is put at the beginning and 〈content
after〉 after the definition of \macro. So this is equivalent to

\def\macro{〈content before〉〈old content of \macro 〉〈content after〉}

It is required that \macro is a usual macro without any arguments. If you want
to patch more complicated macros, use the patch.doc package instead.
The order of the arguments may appear strange, but it is convenient if
〈content before〉 or 〈content after〉 are macros which should be expanded with
\expandafter.
There is some subsidiary macro used in the implementation of the above macros
which might be useful also in some other situations:

13

\toolboxTokDef{〈argumentlist〉}\macrotodefine\toolboxTokDef

This call is similar to

\def\macrotodefine{〈argumentlist〉}

with the difference that the symbol # is stored as such. The order of the argu-
ments has been swapped in order to simplify the application of \expandafter to
〈argumentlist〉.

3.5 Searching, splitting, and replacing

\toolboxSplitAt{〈argument〉}{〈search〉}{\beforestring}{\afterstring}\toolboxSplitAt

Here, \beforestring and \afterstring are arbitrary macro names, and 〈search〉
and 〈argument〉 are any sequences of tokens (which are in the following considered
as ‘strings’).
This call scans 〈argument〉 for the first occurrence of 〈search〉. The macros
\beforestring and \afterstring are defined correspondingly such that
\beforestring expands to the part before the first occurrence, and \afterstring

to the part following the first occurrence. If 〈search〉 does not occur in 〈argument〉,
\beforestring is defined to 〈argument〉, and \afterstring is \let \undefined.
If \beforestring or \afterstring had already been defined before the call,
the previous definition is tacitly overridden. It is explicitly allowed that
\beforestring and \afterstring are the same names. In this case, the result
has the meaning of \afterstring.
It is guaranteed that braces {...} are not lost in 〈argument〉. However, 〈search〉
may not contain any braces, and 〈argument〉 may contain only matching pairs of
braces. Moreover, occurrences of 〈search〉 within a pair of braces in 〈argument〉
are not recognized.
(The order of the arguments has been chosen in order to simplify the use of
\expandafter).
There are some restrictions for the strings in search. For example, the symbol #
is not allowed.
In the above call, the arguments may not run over several paragraphs. If you want
the latter, you have to use the alternative call

\toolboxSplitAt*{〈argument〉}{〈search〉}{\beforestring}{\afterstring}

Example of usage:

\def\examplemacro#1{\toolboxSplitAt{#1}{@}\testme\testme

\ifx\testme\undefined

... (do this when #1 contains no ‘@’ token)

\fi}

If \toolboxSplitAt should be used several times with the same 〈search〉 string,
it is much more efficient to use the following command:

14

\toolboxMakeSplit{〈search〉}{command}\toolboxMakeSplit

This call defines a new macro \command (the name is determined by the second
argument of \toolboxMakeSplit) which can be called in the form

\command{〈argument〉}{\beforestring}{\afterstring}

and which has the analogous meaning as \SplitAt (the argument {〈search〉} is
implicitly fixed and taken from the call of \toolboxMakeSplit). It is explicitly
admissible that the above macro \toolboxMakeSplit is used with an already
existing command name. In this case, the previous definition of \command is
tacitly overridden.
The command created by \toolboxMakeSplit does not accept arguments which
run over several paragraphs. If you want the latter, you have to create this com-
mand by the alternative call

\toolboxMakeSplit*{〈search〉}{command}

The command

\toolboxFreeSplit{〈command〉}

frees the memory used by a previous \toolboxMakeSplit (and lets \command

again be undefined).
The command

\toolboxReplace{〈search〉}{〈replace〉}\macro\toolboxReplace

replaces in \macro all occurences of 〈search〉 by 〈replace〉. The same matches are
found as in \toolboxSplitAt. If you need to search for the same text several
times, it is faster to use the command

\toolboxReplaceSplit{〈replace〉}\SplitCmd\macro\toolboxReplaceSplit

where \SplitCmd is a command previously generated with \toolboxMakeSplit*

according to your 〈search〉 string. (You could also use \toolboxMakeSplit to
generate \SplitCmd, but then \macro should not contain any \pars).

3.6 Redefinition of macros

\toolboxMakeHarmless{\macro}\toolboxMakeHarmless

The above call redefines \macro such that it expands to an ASCII text containing
the previous definition of \macro (i.e. the catcodes of \macro are changed).
The call

\toolboxDropBrace{\macro}\toolboxDropBrace

drops possible outer braces of \macro. More precisely, if \macro expands to
{〈content〉}, then \macro is redefined to 〈content〉 (without braces). Otherwise,
nothing happens.
The command

15

\toolboxIf〈comparison〉{〈definition commands〉}\〈macro〉. . .\toolboxIf

allows conditional definitions. Here, {〈definition command〉} is either \def,
{\long\def}, \let, or some similar command like e.g. the LATEX \newcommand.
If the test \ifx〈comparison〉\〈macro〉 evaluates positive, then \〈macro〉 is defined
correspondingly. Otherwise, \〈macro〉 is not changed.

Examples:

\toolboxIf\undefined\def\macro{....}

\toolboxIf\undefined\let\macro...

\toolboxIf\undefined{\long\def}\macro{....}

\toolboxIf\undefined\newcommand{\macro}{....}

are similar to \def\macro{...} resp. \let\macro... resp.
\long\def\macro{...} resp. \newcommand{\macro} with the difference that
\macro is not changed if it was already defined. In this sense, \toolboxIf is a
more flexible variant of \providecommand.
The commands

\toolboxNewiftrue{〈name〉}\toolboxNewiftrue

\toolboxNewiffalse{〈name〉}\toolboxNewiffalse

test whether the command \if〈name〉 was already introduced with \newif; in
this case nothing happens. Otherwise, \if〈name〉 is introduced similarly to
\newif\if〈name〉 and set to true respectively false. In contrast to the cor-
responding command in TEX or LATEX2.09, this macro is not \outer!

\toolboxNewifTrue{〈name〉}\toolboxNewifTrue

\toolboxNewifFalse{〈name〉}\toolboxNewifFalse

are similar to \toolboxNewiftrue{〈name〉} and \toolboxNewiffalse{〈name〉},
respectively, with the difference that \if〈name〉 is set unconditionally to true

respectively false.

3.7 Concatenated macro names

\toolboxLet\variable{〈macroname〉}\toolboxLet

The above command is analogous to \let\variable\macroname with the differ-
ence that 〈macroname〉 can also contain other tokens like numbers (it is obtained
via \csname). Some converse to this command is

\toolboxWithNr{〈number〉}\command{〈macro〉}

which translates into \command\macronumber (here, 〈macro〉 and 〈number〉 are
just concatenated and evaluated via \csname). Examples:

\toolboxWithNr 1\let{name}\toolboxEmpty

16

This is the same as \let\name1\toolboxEmpty (but such that \name1 is consid-
ered as a name, not as \name 1)

\toolboxWithNr {10}\def{name}{Foo}

This corresponds analogously to \def\name10{Foo}.

\toolboxLet\mymacro{name\the\mycount}

This is similar to \let\mymacro\namexx where xx is the content of the counter
\mycount.

3.8 Various

The following macros have equivalents in most formats (like LATEX2ε). However,
we do not want to rely too much on these formats, so we provide our own defini-
tions. The macro

\toolboxEmpty\toolboxEmpty

expands to nothing (usually, this is the same as \empty). Similarly, the macro

\toolboxSpace\toolboxSpace

expands to a space symbol (usually, this is the same as \space). The token

\toolboxSpaceToken\toolboxSpaceToken

is \let a space token (usually, this is the same as \@sptoken). This token is
convenient in tests of tokens (because it is hard to get a space there which is not
eaten by the TEX parser, although sometimes also constructions like

\expandafter\ifx\toolboxSpace\token

can be used). Also the macros

\toolboxFirstOfTwo\toolboxFirstOfTwo

\toolboxSecondOfTwo\toolboxSecondOfTwo

are provided which read two arguments and return only the first respec-
tively second argument (usually, this is the same as \@firstoftwo respectively
\@secondoftwo). Similarly,

\toolboxGobbleArg{〈argument〉}\toolboxGobbleArg

just reads its argument and expands to nothing.

17

