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Cubic Bézier approximation of a digitized curve
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Abstract

In this paper we present an efficient technique for piecewise cubic Bézier approximation of digitized curve. An adaptive breakpoint detection
method divides a digital curve into a number of segments and each segment is approximated by a cubic Bézier curve so that the approximation
error is minimized. Initial approximated Bézier control points for each of the segments are obtained by interpolation technique i.e. by the
reverse recursion of De Castaljau’s algorithm. Two methods, two-dimensional logarithmic search algorithm (TDLSA) and an evolutionary
search algorithm (ESA), are introduced to find the best-fit Bézier control points from the approximate interpolated control points. ESA based
refinement is proved to be better experimentally. Experimental results show that Bézier approximation of a digitized curve is much more
accurate and uses less number of points compared to other approximation techniques.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the advancement of image processing algorithms, ma-
chine vision techniques are finding wide applications in ob-
ject recognition, visual inspection of industrial parts, security
surveillance, etc. Most of these applications work with 2-D
images, which are projections of 3-D object on a 2-D plane.
Boundary representation plays an important role in pattern anal-
ysis application [1]. It is a well-known fact that shape infor-
mation of 2-D object (or projections) is mostly contained in
the 2-D object’s (projections) boundary, which is obtained as a
set of discrete points of a digital curve in the 2-D image. Thus
for machine vision applications dealing with object shape in-
formation, it is extremely important to extract meaningful de-
scriptors from digital curves. Such features must follow two
important properties. (i) The descriptors should be compact so
that, high-level recognition algorithms can work with these de-
scriptors efficiently. (ii) The descriptors should represent the

∗ Corresponding author. Tel.: +91 33 2337 1231; fax: +91 33 2334 6871.
E-mail addresses: sarbajit@veccal.ernet.in (S. Pal),

gangulypankaj@yahoo.com (P. Ganguly), pkb@ece.iitkgp.ernet.in
(P.K. Biswas).

0031-3203/$30.00 � 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2007.01.019

digital curve as accurately as possible, or in other words, if
we reconstruct the digital curve from the descriptors, the error
between the original digital curve and the reconstructed digital
curve should be minimum.

The digital curve is divided into segments and each digital
segment is fitted with a piece of analytic curve, which can be a
line segment, a circular arc, or a higher order curve. Polygonal
approximation is the simplest approach. It fits digital curves
by finding the break points and connecting them with line seg-
ments. Teh and Chin [2] proposed the concept of region of
support of each point and achieved excellent polygonal ap-
proximations of digital curves. Some other attractive optimiza-
tion approaches for polygonal approximations were proposed
in Refs. [3–6]. Yin [7] applied the genetic algorithms to deter-
mine the optimal polygons. Unfortunately, not all of the dig-
ital curves are suitable for polygonal approximation. Smooth
curves are usually hard to be fitted with polygons. To improve
the performance of approximation, circular arcs and high order
curves should be used.

Using circular arcs for segment representation produces bet-
ter approximation at a higher level of computational complex-
ity [8,9]. Only a few circular arcs are required to approximate
a smooth curve. For a polygon like curve, a set of circular arcs
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with small curvatures can produce satisfactory approximation.
Pei and Horng [8] introduced a method for curve fitting using
circular arcs. Later, they developed an optimal approach based
on dynamic programming [9].

Many heuristics have also been developed for curve fitting
using a combination of line segments and circular arcs [10–12].
The underlying concept of fitting with lines and arcs is that us-
ing line segment is perceptually better than using circular arc
while their geometric-fitting errors are comparable. The method
proposed by Rosin and West [10] first applies a polygonal ap-
proximation technique to find a good polygonal representation.
Consecutive line segments are replaced by an arc if such re-
placement reduces error. This two-pass approach is a direct
improvement of polygonal approximation. It suffers from a
problem that a breakpoint for line segments is not necessarily
suitable for the circular arc after merging. Horng and Li [11]
have developed a dynamic programming approach while Sarkar
et al. [12] have used genetic algorithm.

Bézier curves are piecewise polynomial functions that can
provide local approximation of contours using small number of
parameters. This is useful because human perception of shapes
is based on curvatures of the contours [13]. The advantage of
representing a digital curve by cubic Bézier curve is that it
has relatively few control points. Smooth edges enhance the
quality of the semi-synthetic images and hence provide more
natural look than approximations with circular arcs and/or line
segments.

Cinque et al. [14] describe shape using variable number of
Bézier curve segments. They extracted object contour by ap-
plying border following algorithm [15]. They have sampled
the shape by a set of contour points. The boundary segment
between two chosen contour points (break points) has prede-
termined number of points. The boundary is better approx-
imated by choosing large number of boundary segments or
break points. The Bézier control points are approximated by
computing the magnitude and gradient of the end point tangent
vector of the Bézier segments. The error calculation was not
reported to evaluate the performance of the fitness algorithm.
Bhuiyan and Hama [16] presented an actor identification sys-
tem by approximating the facial features by Bézier curve. The
hand drawn facial feature curve is approximated by single cubic
Bézier curve. So, no judgment of segmentation was required
for representing a contour having multiple curvature and com-
plex shape. They have assumed that the second and third con-
trol points are located at the tangent line made by the curve. To
avoid the computation complexity (N/5)th and (N − (N/5))th
points are generated from the approximated control points and
compared with the corresponding curve points. This process
was continued until the fitness error becomes less than the pre-
defined minimum possible error.

None of the above mentioned work discussed on selection
of the break points when a complex digital curve is to be ap-
proximated by multiple segments of Bézier curves. The break
points or dominant points are considered as representative fea-
tures for the object contours, because they reserve the signif-
icant features of the digitized curve of the images. Following
Attneave’s [1] observation, there are many approaches devel-

oped for detecting dominant points. But any efficient algorithm
for fitting digital data with cubic Bézier is absent.

In this paper, we propose a simple and efficient method
for detection of break points of chain-coded curves suitable
for Bézier approximation. The approximation of the digitized
curves is achieved by joining the successive approximated
Bézier curves and straight line. To minimize the error of ap-
proximation, a two-dimensional logarithmic search algorithm
(TDLSA) or an efficient evolutionary search algorithm (ESA)
is used, just after the initial findings.

The paper is organized as follows. A brief overview of chain
code, Bézier curve and De Casteljau’s representation are pre-
sented in Section 2. The propositions for detection of break
points for Bézier approximation are presented in Section 3.
Section 4 describes method of segment representation of dig-
itized curve with Bézier curve. Section 5 shows the different
measures for approximation of digital curves and experimen-
tally obtained result and Section 6 summarizes the concluding
remarks.

2. Review of chain code and Bézier curve

2.1. Chain code

Chain codes are used to represent a boundary by a connected
sequence of straight-line segments of specified length and di-
rection. It is a coding technique in which a string of codes
represent the sequence of difference vectors between consecu-
tive pixels. This coding convention for boundary representation
of discrete curves was introduced by Freeman [17] and later
elaborated by him [18,19]. The chain code assigns an integer
ci varying from 0 to 7 according to its direction to a vector,
where 1

4�ci is the angle between the x-axis and the vector, for
i = 1, 2, 3, . . . , n as shown in Fig. 1(a). A digital curve can be
expressed as the n chain codes, and is denoted as c1c2c3···cn,
where ci =ci±n (i.e. all indices are modulo n). The 8-directional
chain code of the Fig. 1(b) would be as 10701131000776.

2.2. Bézier curve

A Bézier curve C(t) of degree n can be defined in terms of
a set of control points pi , (i = 0, 1, 2, . . . , n) and is given by
Bézier [20]:

C(t) =
3∑

i=0

piBzi,n(t),

where each term in the sum is the product of a blending function
Bzi,n(t) and a control point pi . Bzi,n(t) are called Bernstein
polynomials and are defined by

Bzi,n(t) = nBit
i(1 − t)n−i ,

where nBi is the binomial coefficient

nBi = n!/i!(n − i)!.
Fig. 2 shows a curve of degree three and the associated control
points p0

0, p0
1, p0

2 and p0
3. Points p0

0 and p0
3 (known as anchors)
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Fig. 1. (a) Chain code direction vectors and (b) curve representing 8-directional
chain code 10701131000776.
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Fig. 2. The recursive interpolation to produce the point p0
3 on the Bézier

curve.

coincide with the end points of the curve but the control points
p0

1 and p0
2 (known as handles) are not coincident with the curve.

The shape of the curve is determined entirely from the position
of the control points.

The advantage of representing a smooth digital curve by cu-
bic Bézier curve is that it goes through the end points of the
digital curve. So p0

0 and p0
3 i.e. two extreme control points of

cubic Bézier could be taken as the end points of the digital
curve. Two intermediate control points that determine the cur-
vature or the bending of the curve are to be interpolated. As t

in the parametric equation is increased, p1
0 is increased towards

p0
1 and Bz0,3 and Bz1,3 primarily determines the curve shape.

The control points p0
1 and p0

2 have most effect when t = 1
3 and

2
3 , respectively, because the value of p0

3 for a particular value of
t is obtained by summing the values of four blending functions.

2.3. De Casteljau representation of Bézier curves

De Casteljau developed an alternative representation, which
is very useful in computer graphics. The De Casteljau algorithm
generates points on the curve by repeated linear interpolation
[21]. Fig. 2 shows how this algorithm works for the cubic case.
Starting with the control polygon p0

i (i = 0, 1, 2, 3) the edges
are subdivided in the ratio t as given above and the superscript
corresponds to the level of recursion, starting at 0. These points,

p1
i , are then connected in order and the resultant edges are

subdivided to get the point p2
i . The recursion stops when only

one edge remains, the subdivision of this edge producing the
point on the curve p3

0(t).
For interpolating two intermediate Bézier control points, the

reverse recursion of De Castaljau’s algorithm is proposed. The
known point p3

0(t) can be expressed in terms of cubic Bézier
control points as given below,

pr
i (t) = (1 − t)pr−1

i (t) + tpr−1
i+1 (t),

where r = 0, 1, 2, 3 and i = 0, 1, 2, 3 and p0
i (t) = pi , p0, p1,

p2, p3 be the four control points of a cubic Bézier curve.

3. Proposed breakpoint detection method

Like the dominant point detection algorithm proposed by
Sarkar [5], this algorithm is also based on manipulation with
chain codes only and requires no knowledge of the co-ordinates
of the digitized curve points. A digital curve C can be defined
as a set of ‘n’ consecutive points. That is

C = {pi(xi, yi)|i = 1, 2, . . . , n},

where n is the number of points, pi is the ith point with the
co-ordinate (xi, yi). For a continuous curve, the curvature at a
point is defined as the rate of change of slope as a function of
arc length. However, this definition of curvature does not hold
for a digital curve, since an exact mathematical definition is
not available for the digital curve. For the polygonal approx-
imation, most of the existing algorithms focus on the curva-
ture estimation by using the information that can be extracted
from the neighbours. From the previous studies it is seen that
choosing the suitable length of support region is very important
in determining the curvature. But approximated Bézier curve
supports up to two full �-rotation of corresponding chain code
representation of digital curve. So the length of support region
varies widely for the nature of the curve. The initial dominant
points are identified as the point with local maximum curva-
ture. The candidates of the dominant points are called the break
points. In addition, break point elimination is conducted to re-
duce the computations during Bézier curve approximation. An
adaptive scheme is applied to obtain the break points based on
the following rules.

Rule 1: Introduce a dominant point dj if there is a crossover
or junction and rearrange the chain code in a way that each
segment does not contain any crossover.

Rule 2: If |ci+1 − ci | > 1 with any rotational transformation,
where, ci+1 and ci are the chain codes of the (i + 1)th and ith
links of the curve, then pi+1 is taken as a break point.

Rule 3: We consider three consecutive dominant points as
di , di+1, di+2. The error of fitting the Bézier curve between
di , di+1 is represented as err(di, di+1). From the initial set of
dominant points obtained by applying Rule 1, delete the break
point di+1 from the dominant point candidates, if one of the
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Fig. 3. Different types of non-interceptive cubic Bézier curve generated by rotating two intermediate control points.

following conditions is satisfied:

err(di, di+1) + err(di+1, di+2) > err(di, di+2),

err(di, di+2) < �.

Rule 4: Introduce a dominant point using the following
method if err(di, di+1) > �. From a set of chain codes between
two break points, we get a modified set of chain code, after
eliminating the co-linear points. While tracing from dominant
point di to di+1 in the modified set of chain code, identify a
point (n) till which four (p = 4) or more consecutive changes
either in clockwise or anti-clockwise direction, are encoun-
tered for the second time. Then introduce a dominant point
dnew at (n − p)th position where 0�p�r . Increase the value
of p from its minimum value till we obtain err(di, dnew) < �.

The above method is intended to find the second local max-
imum curvature to introduce a dominant point. The proposed
Rule application sequence to find the dominant points for Bézier
approximation can be summarized as follows:

Step 1: Perform the contour tracking to find out the chain
code of the curve and apply Rule 1.

Step 2: Extract the initial break points by applying Rule 2.
Step 3: Then apply Rules 3 and 4 repetitively to eliminate

and introduce dominant points, respectively, wherever required.
Fig. 3 shows the different variation of Bézier curve generated

by rotating each control point towards all eight possible orien-
tations from the corresponding end points, while keeping the
other internal control points at a fixed position. The absence of
any dominant point is noticed for certain form of curve after ap-

plying the Rules 1 and 2 on a curve segment. These curves are
mainly categorized in two distinct forms i.e. oscillating form
and spiral form as shown in Figs. 4 and 5, respectively. Rules
1–3 are quite straightforward in contrast to Rule 4, which needs
detailed explanation with elaboration as given in Examples 1
and 2.

Example 1. A complete 2�-rotation of the direction of progress
in chain code is segmented out at alternative interception points
on the curve by suitably chosen straight line. The similar seg-
ment is also obtained from the chain code of the curve by re-
moving its co-linear points. The curve of oscillating form (Case
I) is shown in Fig. 4(a). The typical chain code (0121076701…)
of these types of curves after removing the co-linear points is
depicted in Fig. 4(b). Four clockwise transitions (>), that cor-
responds to �-rotation of the direction of the progress in chain
code is obtained from chain code 2 > 1 > 0 > 7 > 6. An approx-
imate cubic Bézier can accommodate only 2�-rotation (Fig.
4(b)) of the progress direction of its digital curve, to keep the
ISE within a defined parametric limit. The segment between p1
and pn is the longest chain code segment, which can be approx-
imated by cubic Bézier section as three roots of t corresponds
to three interception points. Rule 2 will introduce a dominant
point at pn+1, though the Bézier curve can accommodate the
segment from p1 to pn.

Example 2. Similarly the curve of spiral form (Case II) is
shown in Fig. 5(a) and the chain code (2107654321…) of these
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Fig. 4. Case I: (a) oscillating form of curve and (b) chain code representation
after removing the co-llinear points.
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Fig. 5. Case II: (a) spiral form and (b) chain code representation after
removing the co-llinear points.

types of curves after removing the co-linear points is depicted
in Fig. 5(b). Four clockwise transitions, that corresponds to �-
rotation of the direction of the progress of the curve is obtained
from chain code 2 > 1 > 0 > 7 > 6 as in Fig. 5(b). Similarly
after 6 > 5 > 4 > 3, a complete 2�-rotation is obtained and that
corresponds to the p2 point over the curve in Fig. 5(a).

4. Proposed segment representation method

After detecting the break points, the curve segments are ap-
proximated with Bézier curves. Segment representation with
cubic Bézier curve is computationally very hard. The compu-
tational area (or grid) of size M × N is assumed to hold all ‘n’
points of the digital curve segment, the entire Bézier curve and
the handles p1 and p2 for all cases (initial stage, intermediate
processing stages and final optimal stage). The main objective
is to find suitable and efficient search mechanism to find the po-
sitions of the handles p1 and p2 inside the computational area
so that the drawn Bézier curve has least integral square error
(ISE) value with respect to given ‘n’ sample points. This posi-
tion finding computation has the complexity of O(M2N2). If
M ≈ N , then the complexity becomes O(M4). The 625 × 108

number of computations have to be done to find the positions
of the handles of the optimal Bézier curve, when M = 500.
This computation is very much time consuming. To get the
(near-) optimal solution quickly, an efficient convolution pro-
cess of O(1) complexity is applied and then TDLSA/ESA is

used. The convolution process, after which 1
4 th and 3

4 th points
on the curve are considered, does the initial approximation of
the Bézier control points. These points are used for interpolat-
ing the actual Bézier control points.

4.1. Method for Bézier control point interpolation

The given interpolation method finds out two intermediate
Bézier control points of the given curve. The starting and ter-
minating points of the curve are known. It is required to know
four points on a given curve with respective ‘t’ to interpolate
two intermediate control points. A Bézier curve is completely
generated from its parametric form by varying t from 0 to 1.
Therefore as t varies from 0 to 1

4 and 0 to 3
4 , 25% pixel and

75% pixel of the curve is generated, respectively. Here we con-
sider b0 and b3 as known end points (anchors) of a curve whose
other two Béizer control points (handles) are to be estimated
(Fig. 6). To compute other two points we find two more points
located at the end of 25% and 75% of the full segment, re-
spectively (Fig. 6). Thus the point p1 and p2 can be written in
terms of four Bézier control points as follows:

p1 = (27b0 + 27b1 + 9b2 + b3)/64,

p2 = (b0 + 9b1 + 27b2 + 27b3)/64.

The values of b1 and b2 can be approximated by solving
the De Casteljau parametric equations by taking t = 1

4 and 3
4 ,

respectively,

b1 = 8(3p1 − p2)/9 − (10b0 − 3b3)/9,

b2 = 8(3p2 − p1)/9 + (3b0 − 10b3)/9.

This initial finding is very efficient because it takes O(1)

complexity. Still the ISE can be improved. Rosin [22] intro-
duced fidelity (F ) to measure how good a suboptimal solution
(Emin) is in respect to optimal solution (E)

F = Emin

E
∗ 100.

Assuming the initial solution as suboptimal solution and ESA
based solution as the optimal one, fidelities of initial findings
for the four parts of semicircle curve (see Fig. 8) are 32.8%,
51.2%, 10.6% and 51.5%. These poor fidelities suggest that
further improvement is very important and is described in the
next subsection.

4.2. Methods for further improvement

In this subsection, two improvement schemes are proposed.
Both schemes are dependent on the initial finding. First method
is TDLSA and another is ESA.

4.2.1. Two-dimensional logarithmic search algorithm
TDLSA is used to obtain control points of the best-fit Bézier

curve [23]. Here the ISE for the five initial interpolated po-
sitions, one at the centre of the co-ordinate and four at co-
ordinates (±w/2, ±w/2) of the search window are computed
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Fig. 6. (a) Face contour, (b) after smoothing operation, (c) four chosen points at t = 0, 1
4 , 3

4 , 1, (d) face contour and approximated Bézier curve.

first. In the next step, three more positions with the same step
size in the direction of previous minimum ISE position are
searched. The step size is then halved and above procedure is
continued until the step size becomes unity.

4.2.2. Evolutionary search algorithm
In order to get near-optimal solution searching within very

lesser search space and within a limited time span, ESA has
been incorporated [24,25]. The various design parameters are
addressed in this section. ESA must have the following com-
ponents i.e. a mechanism to encode the solution as a binary
string, population generation, crossover, mutation operator and
a fitness function and selector.

4.2.2.1. Encoding A chromosome represents a feasible solu-
tion of the original problem. In the present context, the co-
ordinates of handles p1 and p2 of cubic Bézier curve are taken
as a chromosome. Bit encoding is employed and the length
of the chromosome is kept fixed to 4 ∗ Ceiling(log2 M). For
each Zi, Z = x, y, i = 2, 3, Ceiling(log2 M) number of bits are
needed.

4.2.2.2. Population generation Each generation ‘n’, there are
three stages to form the valid chromosomes (see Fig. 7). In the
first stage, one seed chromosome is considered. For the first
generation, the algebraic solution, taking n/4 and 3 ∗ n/4th
points on the smooth curve of the given digital curve segment
as the two extra points needed for the solution is taken as seed.
From the second generation onwards, the best chromosome
found in the previous generation is taken. In the second stage,
two windows of length ‘W ’ around the positions of seed han-
dles are considered and ‘m’ (even) chromosomes are randomly
generated which lie within those windows. This is done to in-
troduce some diversity into the population. The most difficulty
factor here is the initial value of the windowing parameter ‘W ’.
A poor choice may lead to several problems. A very high value
of ‘W ’ may lead to diverge from the solution and a very low
value may require a large number of generations for the con-
vergence to the near-optimal solution. Extensive experiments
have been carried out to determine the initial value of ‘W ’. It
is found that if initially the value of ‘W ’ is kept at twice the
square root of ‘n’ unit distance, then a very good start of search
can be established. m more chromosomes are generated in the

 √   

 

  
 

  
 

 
  

 

 

 
  

  

   
  
 

Fig. 7. Structure of ESA for finding the most suitable positions of handles
of cubic Bézier curve, targeting digital curve segment approximation.
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last stage applying selection, crossover and mutation operator
on the previously generated ‘m’ chromosomes. The best out of
1+m+m chromosomes is found out. If the present best is bet-
ter than previous best or the present seed then the windows are
shifted to the present best positions, keeping the size of window
W fixed, otherwise W is decreased to W/2 keeping the posi-
tions of the windows unchanged. This is the rule for changing
the windowing parameter ‘W ’ in the successive generations.
The minimum value W can attain is 1. The other difficulty fac-
tor is, choosing the value of ‘m’ (even). It will not be wise de-
cision to make ‘m’ as a constant throughout all the generations.
Decrement of the size of the windows implies the less chance
of generating ‘m’ different chromosomes. So, after decrement
of window size, there is a high chance of generating the same
chromosome a number of times if ‘m’ is taken as a constant
and this will increase the time for the searching process also.
To get rid of these problems, the value ‘m’ is also decreased to
‘m/2’ during the window size decrement. The minimum value
for ‘m’ is 4. The initial value of ‘m’ is taken as 64 to get even
values for ‘m’ throughout all the generations.

4.2.2.3. Fitness function and selection Fitness function should
accurately measure the quality of the chromosome within the
population. In this present context, a chromosome, which re-
sults in less ISE value, gets a high fitness. So, the fitness func-
tion should be a monotonically decreasing function of the ISE.
Here, the fitness function can be defined as

F(c) = R − E(c),

R = (Emax − Emin)

(Selectivity − 1) + Emax
,

where E(c) is the fitting error i.e. the ISE of chromosome
‘c’ and R is a constant. To calculate the suitable value of R,
the method of ‘selectivity’ is proposed by Singh et al. [26] is
adapted here. ‘Selectivity’ is the ratio of the fitness values of
the maximally fit (Emax) and minimally fit (Emin) solutions.

Singh [26] have found a value of 3–5 for ‘selectivity’ to be
optimal. In our problem R value is adaptive to keep the se-
lectivity being a constant value of 4 in each generation. After
the fitness values of all the chromosomes are scaled, a mat-
ing pool is established by the Universal Stochastic Selection
scheme. Baker’s stochastic universal sampling (SUS) algorithm
[27], which is optimal in terms of bias and spread minimizes
the stochastic errors associated with roulette-wheel selection.

4.2.2.4. Crossover It is employed to perform direct informa-
tion exchange between individuals in a population. Therefore,
the performance of ESA depends on the type of crossover op-
erator implemented and a good choice of crossover rate. In the
following p1 and p2 refer to two parents and c1, c2 two chil-
dren. p1�p2 =c1, c2. We adopted m-point i.e. multi-point type
operator. This operator is effected by randomly dividing each
parent pi into (m + 1) sections, m�1. Starting with the first
parent chromosome p1, alternate sections from the two parents
are copied to form the first child chromosome c1. Similarly

starting with p2, c2 can be generated. Consider the following
example with m = 2:

p1 = [1 0 0|1 0 1|1 1 1],
p2 = [1 1 0|0 0 0|0 0 1]
then

c1 = [1 0 0|0 0 0|1 1 1],
c2 = [1 1 0|1 0 1|0 0 1].

The crossover operation is taken with a high probability of
0.95. A high value is taken to restrict the move of parent chro-
mosomes into next generation without undergoing any genetic
change. This is because the seed, m parent chromosomes, which
are generated from the seed and m child chromosomes gener-
ated from parents are considered at a time for finding the best
chromosome of current generation.

4.2.2.5. Mutation To avoid the local optima problem, mutation
operator is used with very less probability. In this problem,
mutation probably is kept at 0.02. Through bit inverting i.e.
changing 0 to 1 and 1 to 0, mutation process has been carried
out.

5. Results

In order to get into a deeper sense about the performance of
the present method, we have applied TDLSA and ESA to the
four digital curves, namely, a chromosome-shaped curve, an
infinity-shaped curve, a leaf-shaped curve, and a curve with four
semicircles. Detailed analysis of ESA on the semicircle curve
is described here. This semicircle is segmented into four semi-
circular arcs after application of proposed break point detection
method where TDLSA are used to find error of fitting. Each
segment is treated as the input for the evolutionary technique.
The segments are semicircle1 (point number 1–51), semicir-
cle2 (point number 51–65), semicirle3 (point number 65–89)
and semicircle4 (point number 89–102) as shown in Fig. 8. The
decrements of ISE values with the generation are presented in
the graphical form in Fig. 9 for all these four semicircles. A
horizontal line between generation number i and i + 1 in these
plot indicates the change of W value for the (i + 2)th genera-
tion. Near-optimal values are obtained in fourth generation for
all the four segments of the semicircle curve.

Here R value is adaptive to keep the selectivity value constant
(i.e. 4) in each generation. The crossover operation is taken with
a probability of 0.95. These parameters play an important role in
the convergence. The maximum generation value (MAXGEN)
is kept at 10. The ISE values for the full digital curves using
the ESA and TDLSA are presented in the Table 1. For all
four test curves, ESA outperforms the other method. The ESA,
coded in VB, was run on a 550 MHz Pentium-III PC under
Windows operating system. Without any code optimization, the
converging time (including disk access) of the proposed method
obtained, corresponding to Fig. 9(a), (b) and (c), are 3 min 21 s,
2 min 58 s and 1 min 19 s, respectively.

The ISE values obtained for the four digital curves ap-
proximation using the TDLSA and ESA are presented in the
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Table 1. The logarithmic search is a semi-extensive search
method that searches for the optimal control points by hopping
from one region to another, in the direction of lesser ISE. But,
ESA reduces if the best solution inside the current population
is the current seed.

The initial window size (W ) in TDLSA and ESA is taken
considering that high value of W may diverge the solution
and low may increase the iterations to a very high number.
In TDLSA, the ISE for the five initial positions, one at the

Fig. 8. Cubic Bézier approximation for four digital semicircle segments of
semicircle curve with ESA: (a) approximation for semicircle1; (b) approxima-
tion for semicircle2; (c) approximation for semicircle3 and (d) approximation
for semicircle4.
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Fig. 9. ISE vs. generation number plot for the four digital semicircle segments of semicircle curve: (a) plot for semicircle1; (b) plot for semicircle2; (c) plot
for semicircle3; and (d) plot for semicircle4.

centre of the interpolated co-ordinate and four at co-ordinates
(±W/2, ±W/2) of the search window i.e. for 25 combinations
are computed first. In the next step, three more positions with
the same step size in the direction of previous minimum i.e.
at nine locations minimum ISE is searched. The step size is
then halved every time and above procedure is continued at the
minimum ISE position obtained from 33 combinations until
the step size becomes unity. For ESA, m = 64 (initially) and
MAXGEN = 10 and m should be less than 81. In ESA, 80
points have been considered within the pool for generation of
the child chromosome. ESA reduces if the best solution inside
the current population is the current seed. Moreover, there are
several conjugate pairs of control points for which integral error
magnitudes are comparable. Those points are located in such
distributed ways that raise several numbers of local optima
which cannot be avoided in the medium window size during
TDLSA by 5 points comparison.

The results of TDLSA and ESA are presented and compared
with other approximation techniques in Tables 2 and 3 respec-
tively. In order to assess the performance of the proposed,

Table 1
ISEs of the well-known digital curves approximation using TDLSA and ESA

Curve name Algorithm ISE

Chromosome 2-D Logarithmic Search 3.68
Evolutionary Search 2.22

Figure of eight 2-D Logarithmic Search 3.69
Evolutionary Search 3.01

Semicircle 2-D Logarithmic Search 6.93
Evolutionary Search 6.44

Leaf 2-D Logarithmic Search 4.04
Evolutionary Search 2.34
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Table 2
Results of the TDLSA and of six other methods of polygonal approximation

Curve Method nd nbc CR E2 E∞ WE2 WE∞ FOM

Chromosome Teh and Chin [2] 15 — 4.00 7.20 0.71 1.88 0.18 0.555
(n = 60) Ray and Ray [3] 18 — 3.33 5.57 0.71 1.67 0.21 0.599

Cornic [4] 17 — 3.53 5.54 0.86 1.57 0.24 0.637
Sarkar (1-point) [5] 16 — 3.75 5.100 0.707 1.36 0.188 0.735
Sarkar (2-point) [5] 19 — 3.16 3.857 0.555 1.22 0.175 0.82
Wen-Yen Wu [28] 17 — 3.53 5.01 0.64 1.42 0.18 0.798
Proposed TDLSA 5 10 4.00 3.68 0.602 0.92 0.15 1.08

Infinity Teh and Chin 13 — 3.46 5.93 1.0 1.71 0.29 0.59
(n = 45) Ray and Ray 12 — 3.75 5.989 0.894 1.60 0.24 0.626

Cornic 10 — 4.55 4.30 0.78 0.96 0.17 1.046
Sarkar (1-point) 12 — 3.75 5.91 0.707 1.576 0.188 0.634
Sarkar (2-point) 14 — 3.214 3.67 0.632 1.142 0.197 0.876
Wen-Yen Wu 13 — 3.46 5.17 1.11 1.49 0.32 0.669
Proposed TDLSA 2 6 5.625 3.69 0.694 0.656 0.123 1.524

Leaf Teh and Chin 29 — 4.14 14.96 0.99 3.62 0.24 0.276
(n = 120) Ray and Ray 32 — 3.76 14.72 1.00 3.93 0.27 0.255

Cornic a — A a a a a a
Sarkar (1-point) 23 — 5.22 13.17 0.784 2.523 0.15 0.396
Sarkar (2-point) 23 — 5.22 13.17 0.784 2.523 0.15 0.396
Wen-Yen Wu 23 — 5.22 20.34 1.00 3.90 0.19 0.256
Proposed TDLSA 16 32 2.50 4.04 0.67 1.62 0.27 0.619

Semicircles Teh and Chin 22 — 4.64 20.61 1.00 4.45 0.22 0.225
(n = 102) Ray and Ray 29 — 3.52 11.82 0.83 3.36 0.24 0.297

Cornic 30 — 3.40 9.19 0.88 2.70 0.26 0.369
Sarkar (1-point) 19 — 5.368 17.377 1.474 3.237 0.274 0.309
Sarkar (2-point) 20 — 5.1 13.65 1.052 2.676 0.206 0.373
Wen-Yen Wu 27 — 3.78 9.01 0.83 2.38 0.22 0.419
Proposed TDLSA 4 8 8.5 6.935 0.688 0.815 0.08 1.225

Table 3
Result of the TDLSA and ESA with four other methods of curve approximation

Method Chromosome (n = 60) Infinity (n = 45) Leaf (n = 120) Semicircle (n = 102)

nb ISE FOMc nb ISE FOMc nb ISE FOMc nb ISE FOMc

Pei and Horng [8] 15 6.18 0.65 9 4.24 1.18 31 19.66 0.20 12 10.90 0.92
Pei and Horng [9] 10 2.99 2.01 8 2.51 2.24 18 8.25 0.81 4 6.94 4.32
Horng and Li [11] 10 2.67 2.25 6 3.06 2.45 16 11.31 0.66 4 6.94 4.32
Sarkar et al. [12] 10 2.67 2.25 6 3.26 2.30 16 10.96 0.68 4 6.94 4.32

11 2.60 2.10 8 2.36 2.38 18 7.40 0.90 6 6.46 3.10
15 2.18 1.83 9 2.03 2.46 31 1.64 2.36 12 4.31 2.32

Proposed TDLSA 5 3.68 3.26 2 3.69 6.10 16 4.04 1.86 4 6.93 4.33
Proposed ESA 5 2.22 5.41 2 3.01 7.48 16 2.34 3.21 4 6.44 4.66

methods, seven performance evaluation criteria were used in
the experiment. They are the number of dominant points or
break points, the compression ratio, the sum of square error, the
maximum error, the weighted sum of square error, the weighted
maximum error and the figure of merit.

Number of dominant points (nd): It is important to have the
consistent number of dominant points for the curves represent-
ing the same object with different scales and orientation. A ro-
bust method of shape representation should be independent of
scale and orientation.

Number of Bézier control points (nbc): It represents the total
number of Bézier control points required to represent the object
by Bézier curve segments.

Compression ratio (CR): One of the objectives of dominant
point detection is data compression. The larger the compression
ratio, more effective the data compression is. For the same
curve a smaller number of dominant points results in larger
compression ratio. The compression ratio can be defined as

CR = n

(nd + nbc)
,

E∞ =
n∑

i=1

max{ei}.

Weighted sum of square error (WE2): The weighted sum of
square error is to combine the compression ratio and the sum
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Fig. 10. (a1) Chromosome, (a2) infinity, (a3) leaf, (b1, b2, b3) Bézier curve approximation of a1, a2, a3, respectively, (c1, c2, c3) overlap of b1, b2, b3 with
a1, a2, a3, respectively.

of square error. It is defined as

WE2 = 1

CR
E2.

Weighted maximum error (WE∞): The weighted maximum
error is to combine the compression ratio and the maximum
error. It is defined as

WE∞ = 1

CR
E∞.

Figure of merit (FOM): It is a measure proposed by Sarkar
[5] and combines the number of dominant points with the ISE.
It is defined as

FOM = n

(nd × E2)
.

Break point detection method where TDLSA are used to find
error of fitting is applied to four chain-coded curves shown in
Fig. 10(a1)–(a3). The chain codes of all these curves are found

in Teh and Chin [2]. Table 2 is prepared to compare the per-
formance of TDLS algorithm with the few of other polygonal
approximation algorithms. The Bézier approximations of the
curves are plotted in Fig. 10(b1)–(b3). Fig. 10(c1)–(c3) show
the overlapping of the Bézier curves with the original chain-
coded curves.

For the comparative study we have used Sarkar’s FOM using
the four well-known shapes of Chromosome, Infinity, Leaf and
Semicircle. It is quite natural and expected to get a better result
as we have compared polygonal approximation algorithm with
cubic curve approximation algorithm in Table 2. So in Table 3,
we have compared the performance of TDLSA and ESA with
other curve approximation algorithms. Two algorithms by Pei
and Horng [8,9] use only circular arcs for approximation. The
optimal algorithms developed by Horng and Li [11] and Sarkar
et al. [12] use line segment and circular arc. The figure of merit
(FOMc) is defined as n/nb × ISE for curve approximation of
digital curve where n is total number of point and nb is de-
fined as total number of break point which is one less than the
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total number of curve segments to be approximated. A signif-
icant improvement of FOMc is observed for chromosome and
infinity.

6. Conclusions

In this paper, we propose a method for automatic detec-
tion of break points, then approximating the digitized curve
by fitting with Bézier curve. The advantage of Bézier is that
it has relatively less number of control points. This results
in compression of edge boundary as well as smoothing of
non-smooth edge contours. The Bézier curve is chosen be-
cause it directly goes through the specified initial point and
terminating points, where as B-spline goes near to the start-
ing point and the terminating point. Smooth edges have ma-
jor advantages for natural representation. This increases the
quality of the semi-synthetic images and human perception of
shapes which deemed to be based on curvatures of parts of
contour [13].

Approximation of the digital curves by cubic Bézier segment
makes fitting more perfect than other reported curve approxima-
tion methods. The computation expense to fit the Bézier curve
is reduced by interpolating two intermediate control points
by simple algebraic interpolation technique. The refinement at
the location of the two control points, are done by TDLSA
and ESA. The use of a search algorithm enhances the fit-
ting process, by reducing the ISF. The proposed algorithms
have been tested on several well-known chain-coded curves
and appreciable results have been shown in Tables 2 and 3.
It is evident from Tables 2 and 3, the proposed algorithm
yielded much lesser number of break points to represent most
of the shapes than any other methods given. Also, the ISE
is the least for all curves. The figures of merit for all the
shapes are quite significantly better than any other algorithm.
A much better result is obtained so far as all error measures
are concerned.

The experimental results show that the proposed method of
representation by Bézier curve can approximate the curves with
minimum approximation errors. The numbers of break points
are also compared to other methods of approximation. Pal et
al. [29] has used Bézier curve based facial identification sys-
tem where non-interceptive Bézier curves are used to outline
the facial features (i.e. hair boundary, eye, eye-brow, nose, lips
and face boundary). This has reduced the computational cost,
as only four points are sufficient to represent most of the in-
dividual segment of facial features with various complex ex-
pressions. Our next approach is to develop a complex lip tem-
plate, to model lip contours accurately for symmetric and non-
symmetric expression analysis.
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