
FEATPOST manual

L. Nobre G.

0.8.8

mailto:lnobreg@gmail.com

Abstract

FEATPOST is an extension of the METAPOST language that has a
fairly large set of features to facilitate the production of schematic
diagrams, both in three dimensions (3D) and in two dimensions
(2D).
These schematic diagrams are vectorial and focus on the
representation of edges (unlike ray-traced raster images that focus
on surfaces).

Getting started

input featpost3Dplus2D;

First taste of FEATPOST

Each perspective depends on the point of view. FEATPOST uses
the global variable f, of color type, to store the (X ,Y ,Z) space
coordinates of the point of view. Also important is the aim of view
(global variable viewcentr). This pair of points defines the line of
view.

The perspective consists of a projection from space coordinates
into planar (u, v) coordinates on the projection plane. FEATPOST

uses a projection plane that is perpendicular to the line of view and
contains the viewcentr. Furthermore, one of the projection plane
axes is horizontal and the other is perpendicular and on the
projection plane. “Horizontal” means parallel to the XY plane.

One consequence of this setup is that f and viewcentr must not
be on the same vertical line. The three kinds of projection known
to FEATPOST are schematized in figures 1, 2 and 3. The macro
that actually does the projection is, in all cases, rp.

f

viewcentr

Figure: Central projection (default).

f

Figure: Parallel projection.

f

Figure: Spherical projection. The spherical projection is the composition
of two operations: (i) there is a projection onto a sphere and (ii) the
sphere is plaited onto the projection plane.

Angles

Some problems often require defining angles, and diagrams are
needed to visualize their meanings. The angline and
squareangline macros support this (see figure 4).

x
y

z

76.63591

Figure: Example that uses cartaxes, squareangline, angline and
getangle.

Parametric lines

Visualizing parametric lines is another need. When two lines cross,
one should be able to see which line is in front of the other. The
macro emptyline can help here (see figure 5).

A

B

C

Figure: FEATPOST diagram using emptyline.

Curved solids

Some curved surface solid objects can be drawn with FEATPOST.
Among them are cones (verygoodcone), cylinders
(rigorousdisc) and globes (tropicalglobe). These can also
cast their shadows on a horizontal plane (see figure 6). The
production of shadows involves the global variables LightSource,
ShadowOn and HoriZon.

Figure: FEATPOST diagram using the macros rigorousdisc,
verygoodcone, tropicalglobe and setthestage.

Fat sticks

One feature that merges 2D and 3D involves what might be called
“fat sticks”. A fat stick resembles the Teflon magnets used to mix
chemicals. They have volume but can be drawn like a small
straight line segment stroked with a big pencircle. Fat sticks
may be used to represent direction fields (unitary vector fields
without arrows). See figure 7.

Figure: FEATPOST direction field macro director invisible was
used to produce this representation of the molecular structure of a
Smectic A liquid crystal.

Bugs

Finaly, it is important to remember that some capabilities of
FEATPOST, although usable, may be considered “buggy” or only
partially implemented. These include the drawing of cylinders with
holes, as in figure 8.

Figure: FEATPOST example containing a rigorousdisc with five
holes, four of which are fake.

Moving on

It is highly beneficial to be able to understand and cope with
METAPOST error messages as FEATPOST has no protection
against mistaken inputs. One probable cause of errors is the use of
variables with the name of procedures (macros), like

X, Y, Z, W, N, rp, cb, ps

All other procedure names have six or more characters.

The user must be aware that METAPOST has a limited arithmetic
power and that the author has limited programming skills, which
may lead to unperfect 3D figures, very long processing time or
shear bugs. It’s advisable not to try very complex diagrams at first
and it’s recommended to keep 3D coordinates near order 1 (default
METAPOST units).

All three-dimensional FEATPOST macros are build apon the
METAPOST color variable type. It looks like this:

(red,green,blue)

Its components may, nevertheless, be arbtitrary numbers, like:

(X,Y,Z)

So, the color type is adequate to define not only colors but also
3D points and vectors.

Hello world

One very minimalistic example program could be:

input featpost3Dplus2D; beginfig(1); cartaxes(1,1,1);

endfig; end.

where cartaxes is a FEATPOST macro that produces the
Cartesian reference frame with axis labels.

The main variable of any three-dimensional figure is the point of
view. FEATPOST uses the variable f as the point of view. Spread

is another global variable that controls the size of the projection.

Therefore the minimalistic program above should be, at least, like
this:

input featpost3Dplus2D; f:=(6,1,3); Spread:=40; beginfig(1);

cartaxes(1,1,1); endfig; end;

Why FEATPOST?

FEATPOST is good enough to produce scientific diagrams:

• Figure 1 of Phys. Rev. E, 60, 2985-2989 (1999).

• Figures 4, 6 and 8 of Eur. Phys. J. E, 2, 351-358 (2000).

• Figures 8 and 12 of Eur. Phys. J. E, 20, 55-61 (2006).

http://pre.aps.org/abstract/PRE/v60/i3/p2985_1
http://www.springerlink.com/content/pmwu8a2y9pkxr5rq/
http://www.springerlink.com/content/w41308176vnk7408/

From 3D to 2D

The most important macro is rp that converts 3D points to
two-dimensional (2D) rigorous, orthogonal or fish-eye projections.
To draw a line in 3D-space try

draw rp(a)--rp(b);

where a and b are points in space (of color type).

“Straight lines”

But if you’re going for fish-eye it’s better to

draw pathofstraightline(a,b);

If you don’t know, leave it as

drawsegment(a,b);

Figure: Intersecting polygons drawn with the macro sharpraytrace.

Coming back to 3D from 2D

It is possible to do an ”automatic perspective tuning” with the aid
of macro photoreverse. Please, refer both to example
photoreverse.mp (see figure 10) and to the following web page:
FeatPost Deeper Technicalities.

http://matagalatlante.org/nobre/hyt/technicaldrawfromphoto.html

371375

416

44

26

Figure: Example that uses photoreverse. It may not work when vertical
lines are not vertical in average on the photo.

Coming back to 3D from 1D

Using almost the same algorithm as photoreverse, the macro
improvertex allows one to approximate a point in 3D-space with
given distances d from three other points (an initial guess ~i is
required).

point := improvertex(~a, da, ~b, db, ~c , dc , ~i);

ultraimprovertex

Approximating a point in 3D-space with given distances from three
other points is the same as calculating the intersection of three
spheres. And the method to do that is the same as the method to
calculate the intersection of a plane, a cylinder and a spheroid (see
figure 11).

Figure: Example that uses ultraimprovertex.

Scalar function minimization

Macro minimizestep is a minimization routine for scalar
functions like y = f (x) where an initial triplet (x1, x2, x3) with
x1 < x2 < x3 is given as a parabolic squeleton that provides a way
to search for the smallest value of y (if iterated).

point := minimizestep(~x)(f);

The features

3D dots, vectors, flat and curved arrows, angles, parametric lines,
circles and ellipses, cuboids, cones, cylinders, cylindric holes, parts
of cylindrical surfaces, spheres and spheroids, globes, hemispheres,
tora, elliptical frusta, revolution paraboloids, polygons, polyhedra,
functional and parametric surfaces, direction fields, field lines and
trajectories in vector fields (differential equations), schematic
automobiles, schematic electric charges, automatic perspective
tuning, 2D representation of ropes, reference horizontal surfaces,
hexagonal plots, schematic 2D springs, zig–zag lines, irregular
circles, selective intersection of two circles, 2D detection of
tangency, paths for laser cutting machines, minimization of scalar
functions, intersection of 2D areas, intersection point of three
spheres, intersection point of a plane, a cylinder and a spheroid,
intersection of a straight line and a spheroid, intersection of a
straight line and a torus.
And much more.

Figure: Figure that uses SphericalDistortion:=true and
rigorousdisc.

Figure: Figure that uses signalvertex.

Figure: Figure that uses emptyline. The junction point of two different
lines is indicated by an arrow.

� �
��

xc
yc

zc

B

~n�

~n

�

Figure: Figure that uses anglinen and rigorouscircle.

Figure: Figure that uses tdarrow and tdcircarrow.

x
y

z

√
5
−
1

2
φ

1+ √52

Figure: Example that uses labelinspace.

Figure: Figure that uses tropicalglobe.

Figure: Figure that uses spheroid.

x
y

z

a

b

c

d

o
�1

�2

�3

l1

l2

l3

Figure: Figure that uses and explains kindofcube. Note that the three
indicated angles may be used as arguments of eulerrotation.

Figure: Figure that uses positivecharge, getready and doitnow.

Figure: Figure that uses setthearena and simplecar.

light

analyser

polariser

na

Figure: Figure that uses banana.

Figure: Figure that uses quartertorus.

Figure: Figure that uses director invisible and generatedirline.

Figure: Figure that uses hexagonaltrimesh.

0 1 2 3 4 5 6 7

Figure: Figure that uses ropepattern.

tropicalglobe(N , ~c , R , ~A)

R

~A

~c

1 2

3

4

5

tropicalglobe(5, black, 1, blue);

rigorousdisc(Ri , bool, ~c , Ro, ~A)

Ro

Ri
~A

~c

rigorousdisc(0.5, true, black, 1, 0.85blue);

smoothtorus(~c , ~A, Rb, Rs)

Rb

Rs

~A

~c

smoothtorus(black, blue, 0.7, 0.4);

spatialhalfsfear(~c , ~A, R)

R

~A

~c

spatialhalfsfear(black, blue, 1);

kindofcube(bool,bool,~o, α1, α2, α3, l1, l2, l3)

x

y

z

a

b

c

d

α1

α2

α3

~o

l1
l2 l3

kindofcube(false, true, black, 130, 32, 67, 0.3,

0.6, 0.9);

simplecar(~o,(α1, α2, α3), (l1, l2, l3),
(Xf,Yf,Zf), (Xr,Yr,Zr))

~o

Xf Yf Zf

simplecar(black, black, (0.8,0.35,0.18),

(0.1,0.2,0.132), (0.06,0.06,0.1));

verygoodcone(bool, ~c , ~A, R , ~v)

R

~A

~c

~v

verygoodcone(true, black, blue, 0.8, blue+green);

whatisthis(~c , ~S1, ~B1, D, ||~S2||/||~S1||)

D

~S1 ~B1

~S2

~c

whatisthis(black, 0.5red, green, 0.85, 0.8);

spheroid(~c , ~S , R)

R

~S

~c

spheroid(black, 2*blue, 1);

banana(~c , R , (αM , βM , γM), L, θ)

L

R

~M ~c

banana(black, 1, black, 0.3, 145);

quartertorus(~c , ~A, ~B , R)

~B ~A

R

~c
quartertorus(black, -red, red-green, 0.25);

Acknowledgements

Many people have contributed to make FEATPOST what it is
today. Perhaps it would have never come into being without the
early intervention of Jorge Bárrios, providing access to his father’s
computer in 1986. Another important moment happened when
José Esteves first spoke about METAPOST sometime in the late
nineties.
Also, the very accurate criticism of Cristian Barbarosie has
significantly contributed to fundamental improvements. Jens
Schwaiger contributed new macros. Pedro Sebastião, João Dinis
and Gonçalo Morais proposed challenging new features.

	Getting started
	First taste of FEATPOST
	A small subset of features
	Moving on, slowly
	Intersections
	Coming back to 3D from 2D
	Coming back to 3D from 1D
	Scalar function minimization

	Reference Manual
	Global variables
	Definitions
	Macros

	Missing documentation
	Reference-at-a-glance
	Sphere
	Disc
	Torus
	Bowl
	Cuboid
	Simple car
	Cone
	Elliptic prism
	Spheroid
	Cylindrical strip
	Torus' slice

	References
	Acknowledgements

